[4cda31]: / data / dicom_dataset.py

Download this file

142 lines (101 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Manuel A. Morales (moralesq@mit.edu)
# Harvard-MIT Department of Health Sciences & Technology
# Athinoula A. Martinos Center for Biomedical Imaging
import os
import h5py
import glob
import pydicom
import warnings
import numpy as np
import pandas as pd
import nibabel as nib
from data.base_dataset import BaseDataset, Transforms
from data.image_folder import make_dataset
class DICOMDataset(BaseDataset):
def __init__(self, opt):
BaseDataset.__init__(self, opt)
self.filenames = sorted(make_dataset(opt.dataroot, opt.max_dataset_size, 'DICOM'))
self.metadata, self.acquisitions = self.read_metadata()
def __len__(self):
return len(self.acquisitions)
def __getitem__(self, idx):
pid = '_'.join(self.acquisitions[idx].split('_')[:-1]) #PatientName
uid = self.acquisitions[idx].split('_')[-1] #AcquisitionInstanceUID
df = self.metadata[(self.metadata.PatientName==pid)&(self.metadata.AcquisitionInstanceUID==uid)]
return self.load_acquisition(df)
def read_metadata(self):
metadata = {'FileName':[],
'PatientName':[],
'SeriesInstanceUID':[],
'StudyInstanceUID':[],
'ProtocolName':[],
'SeriesTime':[],
'TriggerTime':[],
'InstanceNumber':[],
'ImageOrientationPatient':[],
'ImagePositionPatient':[],
'SliceLocation':[],
'PixelSpacing':[],
'SliceThickness':[],
'AcquisitionInstanceUID':[],
'SliceInstanceUID':[]}
for filename in self.filenames:
dicom = pydicom.read_file(filename)
metadata['FileName'] += [filename]
metadata['PatientName'] += [str(dicom[0x0010, 0x0010].value)]
metadata['SeriesInstanceUID'] += [dicom.SeriesInstanceUID]
metadata['StudyInstanceUID'] += [dicom.StudyInstanceUID]
metadata['ProtocolName'] += [dicom.ProtocolName]
metadata['SeriesTime'] += [dicom.SeriesTime]
metadata['TriggerTime'] += [dicom.TriggerTime]
metadata['InstanceNumber'] += [dicom.InstanceNumber]
metadata['ImageOrientationPatient'] += [dicom.ImageOrientationPatient]
metadata['ImagePositionPatient'] += [dicom.ImagePositionPatient]
metadata['SliceLocation'] += [dicom.SliceLocation]
metadata['PixelSpacing'] += [dicom.PixelSpacing]
metadata['SliceThickness'] += [dicom.SliceThickness]
metadata['AcquisitionInstanceUID'] += [dicom.SeriesInstanceUID.split('.')[9]]
metadata['SliceInstanceUID'] += [dicom.SeriesInstanceUID.split('.')[10]]
metadata = pd.DataFrame(metadata)
acquisitions = []
print('Found %d patient(s):'%(len(metadata.PatientName.unique())))
for patient in metadata.PatientName.unique():
acqs = metadata[metadata.PatientName==patient].AcquisitionInstanceUID.unique().tolist()
print(patient, ': with', len(acqs), 'acquisitions:')
for acq in sorted(acqs):
acquisitions += [patient+'_'+acq]
print(' ', acquisitions[-1])
return metadata, acquisitions
def load_acquisition(self, df):
slices = df.SeriesInstanceUID.unique().tolist()
phases = df.SeriesInstanceUID.value_counts().unique()
assert len(phases)==1, 'Number of phases does not match!'
number_of_slices = len(slices)
number_of_phases = int(phases)
pixel_array = pydicom.read_file(df.iloc[0].FileName).pixel_array
sax_4D = np.zeros((pixel_array.shape +(number_of_slices, number_of_phases)), dtype=pixel_array.dtype)
for z_slice, series in enumerate(slices):
for phase in range(number_of_phases):
filename = df[df.SeriesInstanceUID==series].sort_values('InstanceNumber').iloc[phase].FileName
dicom = pydicom.read_file(filename)
sax_4D[:,:,z_slice,phase] += dicom.pixel_array
affine = read_affine(df.iloc[df.SliceLocation.argmin()])
return nib.Nifti1Image(sax_4D, affine)
def extract_cosines(ImageOrientationPatient):
row_cosine = np.array(ImageOrientationPatient[:3])
column_cosine = np.array(ImageOrientationPatient[3:])
slice_cosine = np.cross(row_cosine, column_cosine)
return np.stack((row_cosine, column_cosine, slice_cosine))
def read_affine(df, viewer='slicer'):
Zooms = np.array(list(df.PixelSpacing)+[df.SliceThickness], dtype=float)
ImageOrientationPatient = np.array(df.ImageOrientationPatient, dtype=float)
ImagePositionPatient = np.array(df.ImagePositionPatient, dtype=float)
ijk2ras = extract_cosines(ImageOrientationPatient)
if viewer == "slicer":
ijk2ras = (ijk2ras*np.array([-1,-1,1])).T
ImagePositionPatient = ImagePositionPatient*np.array([-1,-1,1])
affine = np.stack((ijk2ras[:,0]*Zooms[0],
ijk2ras[:,1]*Zooms[1],
ijk2ras[:,2]*Zooms[2],
ImagePositionPatient), axis=1)
return np.vstack((affine,[[0,0,0,1]]))