|
a |
|
b/.ipynb_checkpoints/Untitled-Copy1-checkpoint.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 5, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import os\n", |
|
|
10 |
"import h5py\n", |
|
|
11 |
"import imageio\n", |
|
|
12 |
"import numpy as np\n", |
|
|
13 |
"import pandas as pd\n", |
|
|
14 |
"import nibabel as nib\n", |
|
|
15 |
"import seaborn as sns\n", |
|
|
16 |
"from utils import metrics\n", |
|
|
17 |
"from data import base_dataset" |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "code", |
|
|
22 |
"execution_count": 2, |
|
|
23 |
"metadata": {}, |
|
|
24 |
"outputs": [], |
|
|
25 |
"source": [ |
|
|
26 |
"from utils import visualizer\n", |
|
|
27 |
"import matplotlib.pylab as plt\n", |
|
|
28 |
"from scipy.ndimage.measurements import center_of_mass" |
|
|
29 |
] |
|
|
30 |
}, |
|
|
31 |
{ |
|
|
32 |
"cell_type": "code", |
|
|
33 |
"execution_count": 3, |
|
|
34 |
"metadata": {}, |
|
|
35 |
"outputs": [], |
|
|
36 |
"source": [ |
|
|
37 |
"from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas\n", |
|
|
38 |
"from matplotlib.figure import Figure" |
|
|
39 |
] |
|
|
40 |
}, |
|
|
41 |
{ |
|
|
42 |
"cell_type": "code", |
|
|
43 |
"execution_count": null, |
|
|
44 |
"metadata": {}, |
|
|
45 |
"outputs": [], |
|
|
46 |
"source": [] |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
"cell_type": "code", |
|
|
50 |
"execution_count": 10, |
|
|
51 |
"metadata": {}, |
|
|
52 |
"outputs": [ |
|
|
53 |
{ |
|
|
54 |
"name": "stdout", |
|
|
55 |
"output_type": "stream", |
|
|
56 |
"text": [ |
|
|
57 |
"DM 0.27433953948483814 -0.17179240013074187\n" |
|
|
58 |
] |
|
|
59 |
} |
|
|
60 |
], |
|
|
61 |
"source": [ |
|
|
62 |
"Clinical_params = pd.DataFrame({'Group':[], 'SubjectID':[], 'rESS':[], 'cESS':[],\n", |
|
|
63 |
" 'RV_EDV_ml':[], 'RV_ESV_ml':[], 'RV_EF':[], \n", |
|
|
64 |
" 'LV_EDV_ml':[], 'LV_ESV_ml':[], 'LV_EF':[], 'LV_mass_g':[], 'Frame':[]})\n", |
|
|
65 |
"\n", |
|
|
66 |
"\n", |
|
|
67 |
"df = pd.read_csv('../private_data/MARTINOS.csv', index_col=0)\n", |
|
|
68 |
"\n", |
|
|
69 |
"Err = []\n", |
|
|
70 |
"Ecc = []\n", |
|
|
71 |
"for subject_index in df.index: \n", |
|
|
72 |
" group = df.iloc[subject_index].Group\n", |
|
|
73 |
" sid = df.iloc[subject_index].SubjectID\n", |
|
|
74 |
" \n", |
|
|
75 |
" if group == 'DM':\n", |
|
|
76 |
" M_nifti = nib.load('../private_data_results/MARTINOS/MSTAT_DM_VOL%d_V1_segmentation.nii'%(sid))\n", |
|
|
77 |
" u_HF = h5py.File('../private_data_results/MARTINOS/MSTAT_DM_VOL%d_V1_motion.h5'%(sid), 'r')\n", |
|
|
78 |
" elif sid > 100:\n", |
|
|
79 |
" M_nifti = nib.load('../private_data_results/MARTINOS/MSTAT_%d_V2_segmentation.nii'%(sid))\n", |
|
|
80 |
" u_HF = h5py.File('../private_data_results/MARTINOS/MSTAT_%d_V2_motion.h5'%(sid), 'r')\n", |
|
|
81 |
" else:\n", |
|
|
82 |
" try:\n", |
|
|
83 |
" M_nifti = nib.load('../private_data_results/MARTINOS/MSTAT_VOL%d_V1_segmentation.nii'%(sid))\n", |
|
|
84 |
" u_HF = h5py.File('../private_data_results/MARTINOS/MSTAT_VOL%d_V1_motion.h5'%(sid), 'r')\n", |
|
|
85 |
" except:\n", |
|
|
86 |
" M_nifti = nib.load('../private_data_results/MARTINOS/MSTAT_VOL%d_V2_segmentation.nii'%(sid))\n", |
|
|
87 |
" u_HF = h5py.File('../private_data_results/MARTINOS/MSTAT_VOL%d_V2_motion.h5'%(sid), 'r')\n", |
|
|
88 |
" \n", |
|
|
89 |
" \n", |
|
|
90 |
" M_nifti = nifti_dataset.resample_nifti(M_nifti, in_plane_resolution_mm=1.25, number_of_slices=16)\n", |
|
|
91 |
" \n", |
|
|
92 |
" m = M_nifti.get_fdata()\n", |
|
|
93 |
" u = load_HF(u_HF)\n", |
|
|
94 |
" \n", |
|
|
95 |
" center = center_of_mass(m[:,:,:,0]==3)\n", |
|
|
96 |
" \n", |
|
|
97 |
" u=base_dataset._roll2center_crop(u,center)\n", |
|
|
98 |
" m=base_dataset._roll2center_crop(m,center)\n", |
|
|
99 |
" \n", |
|
|
100 |
" esid = (m[:,:,3:-3]==3).sum(axis=(0,1,2)).argmin()\n", |
|
|
101 |
" \n", |
|
|
102 |
" \n", |
|
|
103 |
" for t in [esid]:\n", |
|
|
104 |
" # CALCULATE PARAMS AT END-SYSTOLE ONLY\n", |
|
|
105 |
" \n", |
|
|
106 |
" E = strain.MyocardialStrain(m[:,:,:,0],u[:,:,:,:,t])\n", |
|
|
107 |
" E.calculate_strain()\n", |
|
|
108 |
"\n", |
|
|
109 |
" rESS = E.Err[E.mask_rot==2].mean()\n", |
|
|
110 |
" cESS = E.Ecc[E.mask_rot==2].mean()\n", |
|
|
111 |
" \n", |
|
|
112 |
" print(group, rESS, cESS)\n", |
|
|
113 |
"\n", |
|
|
114 |
" \n", |
|
|
115 |
" break" |
|
|
116 |
] |
|
|
117 |
}, |
|
|
118 |
{ |
|
|
119 |
"cell_type": "code", |
|
|
120 |
"execution_count": null, |
|
|
121 |
"metadata": {}, |
|
|
122 |
"outputs": [], |
|
|
123 |
"source": [] |
|
|
124 |
}, |
|
|
125 |
{ |
|
|
126 |
"cell_type": "code", |
|
|
127 |
"execution_count": 11, |
|
|
128 |
"metadata": {}, |
|
|
129 |
"outputs": [], |
|
|
130 |
"source": [ |
|
|
131 |
"import numpy as np\n", |
|
|
132 |
"from scipy.ndimage import rotate\n", |
|
|
133 |
"from scipy.ndimage import gaussian_filter\n", |
|
|
134 |
"from scipy.interpolate import interp1d, interp2d\n", |
|
|
135 |
"from scipy.ndimage.measurements import center_of_mass\n", |
|
|
136 |
"\n", |
|
|
137 |
"class MyocardialStrain():\n", |
|
|
138 |
" \n", |
|
|
139 |
" def __init__(self, mask, flow):\n", |
|
|
140 |
" \n", |
|
|
141 |
" self.mask = mask\n", |
|
|
142 |
" self.flow = flow\n", |
|
|
143 |
" \n", |
|
|
144 |
" assert len(mask.shape) == 3\n", |
|
|
145 |
" assert len(flow.shape) == 4\n", |
|
|
146 |
" assert mask.shape == flow.shape[:3]\n", |
|
|
147 |
" assert flow.shape[-1] == 3\n", |
|
|
148 |
" \n", |
|
|
149 |
" def calculate_strain(self, dx=1, dy=1, dz=1, lv_label=3):\n", |
|
|
150 |
" \n", |
|
|
151 |
" cx, cy, cz = center_of_mass(self.mask==lv_label)\n", |
|
|
152 |
" nx, ny, nz = self.mask.shape\n", |
|
|
153 |
" \n", |
|
|
154 |
" self.flow_rot = _roll_to_center(self.flow, cx, cy)\n", |
|
|
155 |
" self.mask_rot = _roll_to_center(self.mask, cx, cy)\n", |
|
|
156 |
"\n", |
|
|
157 |
" ux, uy, uz = np.array_split(self.flow_rot, 3, -1)\n", |
|
|
158 |
" Uxx,Uxy,Uxz = np.gradient(np.squeeze(ux),dx,dy,dz)\n", |
|
|
159 |
" Uyx,Uyy,Uyz = np.gradient(np.squeeze(uy),dx,dy,dz)\n", |
|
|
160 |
" Uzx,Uzy,Uzz = np.gradient(np.squeeze(uz),dx,dy,dz)\n", |
|
|
161 |
"\n", |
|
|
162 |
" self.E_cart = np.zeros((nx,ny,nz,3,3))\n", |
|
|
163 |
" for i in range(nx):\n", |
|
|
164 |
" for j in range(ny):\n", |
|
|
165 |
" for k in range(nz):\n", |
|
|
166 |
" Ugrad = [[Uxx[i,j,k], Uxy[i,j,k], Uxz[i,j,k]], \n", |
|
|
167 |
" [Uyx[i,j,k], Uyy[i,j,k], Uyz[i,j,k]],\n", |
|
|
168 |
" [Uzx[i,j,k], Uzy[i,j,k], Uzz[i,j,k]]]\n", |
|
|
169 |
" F = np.array(Ugrad) + np.identity(3)\n", |
|
|
170 |
" e = 0.5*(np.matmul(F.T, F) - np.identity(3))\n", |
|
|
171 |
" self.E_cart[i,j,k] += e\n", |
|
|
172 |
"\n", |
|
|
173 |
" self.Ezz = self.E_cart[:,:,:,2,2]\n", |
|
|
174 |
" self.Err, self.Ecc = self._convert_to_polar(self.E_cart[:,:,:,:2,:2])\n", |
|
|
175 |
"\n", |
|
|
176 |
" \n", |
|
|
177 |
" \n", |
|
|
178 |
" \n", |
|
|
179 |
" def _convert_to_polar(self, E):\n", |
|
|
180 |
"\n", |
|
|
181 |
" phi = _polar_grid(*E.shape[:2])[0]\n", |
|
|
182 |
" Err = np.zeros(self.mask.shape)\n", |
|
|
183 |
" Ecc = np.zeros(self.mask.shape)\n", |
|
|
184 |
" for k in range(self.mask.shape[-1]):\n", |
|
|
185 |
" cos = np.cos(np.deg2rad(phi))\n", |
|
|
186 |
" sin = np.sin(np.deg2rad(phi))\n", |
|
|
187 |
" \n", |
|
|
188 |
" Exx, Exy, Eyx, Eyy = E[:,:,k,0,0],E[:,:,k,0,1],E[:,:,k,1,0],E[:,:,k,1,1]\n", |
|
|
189 |
" Err[:,:,k] += cos*( cos*Exx+sin*Exy) +sin*( cos*Eyx+sin*Eyy)\n", |
|
|
190 |
" Ecc[:,:,k] += -sin*(-sin*Exx+cos*Exy) +cos*(-sin*Eyx+cos*Eyy)\n", |
|
|
191 |
"\n", |
|
|
192 |
" return Err, Ecc\n", |
|
|
193 |
" \n", |
|
|
194 |
" \n", |
|
|
195 |
"\n", |
|
|
196 |
"def _roll(x, rx, ry):\n", |
|
|
197 |
" x = np.roll(x, rx, axis=0)\n", |
|
|
198 |
" return np.roll(x, ry, axis=1)\n", |
|
|
199 |
"\n", |
|
|
200 |
"def _roll_to_center(x, cx, cy):\n", |
|
|
201 |
" nx, ny = x.shape[:2]\n", |
|
|
202 |
" return _roll(x, int(nx//2-cx), int(ny//2-cy))\n", |
|
|
203 |
"\n", |
|
|
204 |
"def _polar_grid(nx=128, ny=128):\n", |
|
|
205 |
" x, y = np.meshgrid(np.linspace(-nx//2, nx//2, nx), np.linspace(-ny//2, ny//2, ny))\n", |
|
|
206 |
" phi = (np.rad2deg(np.arctan2(y, x)) + 180).T\n", |
|
|
207 |
" r = np.sqrt(x**2+y**2+1e-8)\n", |
|
|
208 |
" return phi, r" |
|
|
209 |
] |
|
|
210 |
}, |
|
|
211 |
{ |
|
|
212 |
"cell_type": "code", |
|
|
213 |
"execution_count": 12, |
|
|
214 |
"metadata": {}, |
|
|
215 |
"outputs": [ |
|
|
216 |
{ |
|
|
217 |
"name": "stdout", |
|
|
218 |
"output_type": "stream", |
|
|
219 |
"text": [ |
|
|
220 |
"DM 0.27433953948483814 -0.17179240013074187\n" |
|
|
221 |
] |
|
|
222 |
} |
|
|
223 |
], |
|
|
224 |
"source": [ |
|
|
225 |
"E = MyocardialStrain(m[:,:,:,0],u[:,:,:,:,t])\n", |
|
|
226 |
"E.calculate_strain()\n", |
|
|
227 |
"\n", |
|
|
228 |
"rESS = E.Err[E.mask_rot==2].mean()\n", |
|
|
229 |
"cESS = E.Ecc[E.mask_rot==2].mean()\n", |
|
|
230 |
"\n", |
|
|
231 |
"print(group, rESS, cESS)" |
|
|
232 |
] |
|
|
233 |
}, |
|
|
234 |
{ |
|
|
235 |
"cell_type": "code", |
|
|
236 |
"execution_count": 13, |
|
|
237 |
"metadata": {}, |
|
|
238 |
"outputs": [], |
|
|
239 |
"source": [ |
|
|
240 |
"mask = m[:,:,:,0]\n", |
|
|
241 |
"flow = u[:,:,:,:,t]" |
|
|
242 |
] |
|
|
243 |
}, |
|
|
244 |
{ |
|
|
245 |
"cell_type": "code", |
|
|
246 |
"execution_count": 19, |
|
|
247 |
"metadata": {}, |
|
|
248 |
"outputs": [], |
|
|
249 |
"source": [ |
|
|
250 |
"lv_label = 3\n", |
|
|
251 |
"\n", |
|
|
252 |
"cx, cy, cz = center_of_mass(mask==lv_label)\n", |
|
|
253 |
"nx, ny, nz = mask.shape\n", |
|
|
254 |
"\n", |
|
|
255 |
"cx, cy, cz\n", |
|
|
256 |
"\n", |
|
|
257 |
"flow_rot = _roll_to_center(flow, cx, cy)\n", |
|
|
258 |
"mask_rot = _roll_to_center(mask, cx, cy)\n", |
|
|
259 |
"\n", |
|
|
260 |
"dx=1; dy=1; dz=1\n", |
|
|
261 |
"\n", |
|
|
262 |
"ux, uy, uz = np.array_split(flow_rot, 3, -1)\n", |
|
|
263 |
"Uxx,Uxy,Uxz = np.gradient(np.squeeze(ux),dx,dy,dz)\n", |
|
|
264 |
"Uyx,Uyy,Uyz = np.gradient(np.squeeze(uy),dx,dy,dz)\n", |
|
|
265 |
"Uzx,Uzy,Uzz = np.gradient(np.squeeze(uz),dx,dy,dz)" |
|
|
266 |
] |
|
|
267 |
}, |
|
|
268 |
{ |
|
|
269 |
"cell_type": "code", |
|
|
270 |
"execution_count": 53, |
|
|
271 |
"metadata": {}, |
|
|
272 |
"outputs": [], |
|
|
273 |
"source": [ |
|
|
274 |
"def_grad = np.array([[Uxx,Uxy,Uxz],\n", |
|
|
275 |
" [Uyx,Uyy,Uyz],\n", |
|
|
276 |
" [Uzx,Uzy,Uzz]])" |
|
|
277 |
] |
|
|
278 |
}, |
|
|
279 |
{ |
|
|
280 |
"cell_type": "code", |
|
|
281 |
"execution_count": 54, |
|
|
282 |
"metadata": {}, |
|
|
283 |
"outputs": [], |
|
|
284 |
"source": [ |
|
|
285 |
"I = np.identity(3)[:,:,None,None,None]\n", |
|
|
286 |
"I = np.repeat(I,repeats=128, axis=2)\n", |
|
|
287 |
"I = np.repeat(I,repeats=128, axis=3)\n", |
|
|
288 |
"I = np.repeat(I,repeats=16, axis=4)" |
|
|
289 |
] |
|
|
290 |
}, |
|
|
291 |
{ |
|
|
292 |
"cell_type": "code", |
|
|
293 |
"execution_count": 62, |
|
|
294 |
"metadata": {}, |
|
|
295 |
"outputs": [], |
|
|
296 |
"source": [ |
|
|
297 |
"F = def_grad + I" |
|
|
298 |
] |
|
|
299 |
}, |
|
|
300 |
{ |
|
|
301 |
"cell_type": "code", |
|
|
302 |
"execution_count": null, |
|
|
303 |
"metadata": {}, |
|
|
304 |
"outputs": [], |
|
|
305 |
"source": [] |
|
|
306 |
}, |
|
|
307 |
{ |
|
|
308 |
"cell_type": "code", |
|
|
309 |
"execution_count": null, |
|
|
310 |
"metadata": {}, |
|
|
311 |
"outputs": [], |
|
|
312 |
"source": [] |
|
|
313 |
}, |
|
|
314 |
{ |
|
|
315 |
"cell_type": "code", |
|
|
316 |
"execution_count": 64, |
|
|
317 |
"metadata": {}, |
|
|
318 |
"outputs": [], |
|
|
319 |
"source": [ |
|
|
320 |
"for i in range(nx):\n", |
|
|
321 |
" for j in range(ny):\n", |
|
|
322 |
" for k in range(nz):\n", |
|
|
323 |
" \n", |
|
|
324 |
" Ugrad = [[Uxx[i,j,k], Uxy[i,j,k], Uxz[i,j,k]], \n", |
|
|
325 |
" [Uyx[i,j,k], Uyy[i,j,k], Uyz[i,j,k]],\n", |
|
|
326 |
" [Uzx[i,j,k], Uzy[i,j,k], Uzz[i,j,k]]]\n", |
|
|
327 |
" \n", |
|
|
328 |
" Fijk = np.array(Ugrad) + np.identity(3)\n", |
|
|
329 |
" \n", |
|
|
330 |
" assert (Fijk == F[:,:,i,j,k]).all()" |
|
|
331 |
] |
|
|
332 |
}, |
|
|
333 |
{ |
|
|
334 |
"cell_type": "code", |
|
|
335 |
"execution_count": 58, |
|
|
336 |
"metadata": {}, |
|
|
337 |
"outputs": [ |
|
|
338 |
{ |
|
|
339 |
"data": { |
|
|
340 |
"text/plain": [ |
|
|
341 |
"array([[1., 0., 0.],\n", |
|
|
342 |
" [0., 1., 0.],\n", |
|
|
343 |
" [0., 0., 1.]])" |
|
|
344 |
] |
|
|
345 |
}, |
|
|
346 |
"execution_count": 58, |
|
|
347 |
"metadata": {}, |
|
|
348 |
"output_type": "execute_result" |
|
|
349 |
} |
|
|
350 |
], |
|
|
351 |
"source": [ |
|
|
352 |
"Fijk" |
|
|
353 |
] |
|
|
354 |
}, |
|
|
355 |
{ |
|
|
356 |
"cell_type": "code", |
|
|
357 |
"execution_count": 59, |
|
|
358 |
"metadata": {}, |
|
|
359 |
"outputs": [ |
|
|
360 |
{ |
|
|
361 |
"data": { |
|
|
362 |
"text/plain": [ |
|
|
363 |
"array([[0., 0., 0.],\n", |
|
|
364 |
" [0., 0., 0.],\n", |
|
|
365 |
" [0., 0., 0.]])" |
|
|
366 |
] |
|
|
367 |
}, |
|
|
368 |
"execution_count": 59, |
|
|
369 |
"metadata": {}, |
|
|
370 |
"output_type": "execute_result" |
|
|
371 |
} |
|
|
372 |
], |
|
|
373 |
"source": [ |
|
|
374 |
"F[:,:,i,j,k]" |
|
|
375 |
] |
|
|
376 |
}, |
|
|
377 |
{ |
|
|
378 |
"cell_type": "code", |
|
|
379 |
"execution_count": null, |
|
|
380 |
"metadata": {}, |
|
|
381 |
"outputs": [], |
|
|
382 |
"source": [ |
|
|
383 |
"F = np.array(Ugrad) + np.identity(3)\n", |
|
|
384 |
" e = 0.5*(np.matmul(F.T, F) - np.identity(3))\n", |
|
|
385 |
" self.E_cart[i,j,k] += e\n" |
|
|
386 |
] |
|
|
387 |
}, |
|
|
388 |
{ |
|
|
389 |
"cell_type": "code", |
|
|
390 |
"execution_count": 35, |
|
|
391 |
"metadata": {}, |
|
|
392 |
"outputs": [], |
|
|
393 |
"source": [ |
|
|
394 |
"np.repeat?" |
|
|
395 |
] |
|
|
396 |
}, |
|
|
397 |
{ |
|
|
398 |
"cell_type": "code", |
|
|
399 |
"execution_count": null, |
|
|
400 |
"metadata": {}, |
|
|
401 |
"outputs": [], |
|
|
402 |
"source": [] |
|
|
403 |
}, |
|
|
404 |
{ |
|
|
405 |
"cell_type": "code", |
|
|
406 |
"execution_count": 7, |
|
|
407 |
"metadata": {}, |
|
|
408 |
"outputs": [], |
|
|
409 |
"source": [ |
|
|
410 |
"# Manuel A. Morales (moralesq@mit.edu)\n", |
|
|
411 |
"# Harvard-MIT Department of Health Sciences & Technology \n", |
|
|
412 |
"# Athinoula A. Martinos Center for Biomedical Imaging\n", |
|
|
413 |
"\n", |
|
|
414 |
"import os\n", |
|
|
415 |
"import h5py\n", |
|
|
416 |
"import glob\n", |
|
|
417 |
"import warnings\n", |
|
|
418 |
"import numpy as np\n", |
|
|
419 |
"import nibabel as nib\n", |
|
|
420 |
"\n", |
|
|
421 |
"from dipy.align.reslice import reslice\n", |
|
|
422 |
"from data.base_dataset import BaseDataset, Transforms\n", |
|
|
423 |
"from data.image_folder import make_dataset\n", |
|
|
424 |
"\n", |
|
|
425 |
"\n", |
|
|
426 |
"class H5PYDataset(BaseDataset):\n", |
|
|
427 |
"\n", |
|
|
428 |
" def __init__(self, opt):\n", |
|
|
429 |
" BaseDataset.__init__(self, opt)\n", |
|
|
430 |
" self.filenames = sorted(make_dataset(opt.dataroot, opt.max_dataset_size, 'H5PY'))\n", |
|
|
431 |
" \n", |
|
|
432 |
" def __len__(self):\n", |
|
|
433 |
" return len(self.filenames)\n", |
|
|
434 |
" \n", |
|
|
435 |
" def __getitem__(self, idx): \n", |
|
|
436 |
"\n", |
|
|
437 |
" HF = h5py.File(self.filenames[idx], 'r')\n", |
|
|
438 |
" " |
|
|
439 |
] |
|
|
440 |
}, |
|
|
441 |
{ |
|
|
442 |
"cell_type": "code", |
|
|
443 |
"execution_count": 8, |
|
|
444 |
"metadata": {}, |
|
|
445 |
"outputs": [], |
|
|
446 |
"source": [ |
|
|
447 |
"import h5py\n", |
|
|
448 |
"from utils import strain\n", |
|
|
449 |
"from data import nifti_dataset" |
|
|
450 |
] |
|
|
451 |
}, |
|
|
452 |
{ |
|
|
453 |
"cell_type": "code", |
|
|
454 |
"execution_count": 9, |
|
|
455 |
"metadata": {}, |
|
|
456 |
"outputs": [], |
|
|
457 |
"source": [ |
|
|
458 |
"def load_HF(HF):\n", |
|
|
459 |
" output = []\n", |
|
|
460 |
" for frame_id in range(len(HF.keys())):\n", |
|
|
461 |
" key = 'frame_%d'%(frame_id)\n", |
|
|
462 |
" for subkey in HF[key].keys():\n", |
|
|
463 |
" output += [np.array(HF[key][subkey])]\n", |
|
|
464 |
"\n", |
|
|
465 |
" HF.close()\n", |
|
|
466 |
" return np.stack(output,-1)" |
|
|
467 |
] |
|
|
468 |
}, |
|
|
469 |
{ |
|
|
470 |
"cell_type": "code", |
|
|
471 |
"execution_count": null, |
|
|
472 |
"metadata": {}, |
|
|
473 |
"outputs": [], |
|
|
474 |
"source": [] |
|
|
475 |
}, |
|
|
476 |
{ |
|
|
477 |
"cell_type": "code", |
|
|
478 |
"execution_count": null, |
|
|
479 |
"metadata": {}, |
|
|
480 |
"outputs": [], |
|
|
481 |
"source": [] |
|
|
482 |
} |
|
|
483 |
], |
|
|
484 |
"metadata": { |
|
|
485 |
"kernelspec": { |
|
|
486 |
"display_name": "Python 3", |
|
|
487 |
"language": "python", |
|
|
488 |
"name": "python3" |
|
|
489 |
}, |
|
|
490 |
"language_info": { |
|
|
491 |
"codemirror_mode": { |
|
|
492 |
"name": "ipython", |
|
|
493 |
"version": 3 |
|
|
494 |
}, |
|
|
495 |
"file_extension": ".py", |
|
|
496 |
"mimetype": "text/x-python", |
|
|
497 |
"name": "python", |
|
|
498 |
"nbconvert_exporter": "python", |
|
|
499 |
"pygments_lexer": "ipython3", |
|
|
500 |
"version": "3.6.9" |
|
|
501 |
} |
|
|
502 |
}, |
|
|
503 |
"nbformat": 4, |
|
|
504 |
"nbformat_minor": 2 |
|
|
505 |
} |