[54b284]: / utils.py

Download this file

336 lines (227 with data), 10.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import numpy as np
import cv2
import SimpleITK as sitk
import matplotlib
import matplotlib.pyplot as plt
from scipy import ndimage
import pdb
import math
import vtk
from torch.autograd import Variable
from skimage.morphology import binary_dilation, disk
import imageio
import os
def cdist(x, y):
"""
Compute distance between each pair of the two collections of inputs.
:param x: Nxd Tensor
:param y: Mxd Tensor
:res: NxM matrix where dist[i,j] is the norm between x[i,:] and y[j,:],
i.e. dist[i,j] = ||x[i,:]-y[j,:]||
"""
differences = x.unsqueeze(1) - y.unsqueeze(0)
distances = torch.sum((differences+1e-6)**2, -1).sqrt()
return distances
def generaliz_mean(tensor, dim, p=-9, keepdim=False):
# """
# Computes the softmin along some axes.
# Softmin is the same as -softmax(-x), i.e,
# softmin(x) = -log(sum_i(exp(-x_i)))
# The smoothness of the operator is controlled with k:
# softmin(x) = -log(sum_i(exp(-k*x_i)))/k
# :param input: Tensor of any dimension.
# :param dim: (int or tuple of ints) The dimension or dimensions to reduce.
# :param keepdim: (bool) Whether the output tensor has dim retained or not.
# :param k: (float>0) How similar softmin is to min (the lower the more smooth).
# """
# return -torch.log(torch.sum(torch.exp(-k*input), dim, keepdim))/k
"""
The generalized mean. It corresponds to the minimum when p = -inf.
https://en.wikipedia.org/wiki/Generalized_mean
:param tensor: Tensor of any dimension.
:param dim: (int or tuple of ints) The dimension or dimensions to reduce.
:param keepdim: (bool) Whether the output tensor has dim retained or not.
:param p: (float<0).
"""
assert p < 0
res= torch.mean((tensor + 1e-6)**p, dim, keepdim=keepdim)**(1./p)
return res
def weightedHausdorff_batch(prob_loc, prob_vec, gt, height, width, temper, status):
max_dist = math.sqrt(height ** 2 + width ** 2)
# print (gt.shape)
# print (gt.sum())
# print (prob_vec.sum())
batch_size = prob_loc.shape[0]
# print (batch_size)
term_1 = []
term_2 = []
for i in range(batch_size):
prob_vec_sele = prob_vec[i, :, 0][prob_vec[i, :, 0] > torch.exp(torch.tensor((-1) * temper).cuda())]
idx_sele_x = prob_loc[i, :, 0][prob_vec[i, :, 0] > torch.exp(torch.tensor((-1) * temper).cuda())]
idx_sele_y = prob_loc[i, :, 1][prob_vec[i, :, 0] > torch.exp(torch.tensor((-1) * temper).cuda())]
idx_sele = torch.stack((idx_sele_x, idx_sele_y), 1)
# For case GT=0
if gt[i,:,:].sum() == 0:
if prob_vec_sele.sum() < 1e-3:
if status=='train':
term_1.append(Variable(torch.tensor(0.0).cuda(), requires_grad=True))
term_2.append(Variable(torch.tensor(0.0).cuda(), requires_grad=True))
else:
term_1.append(torch.tensor(0.0).cuda())
term_2.append(torch.tensor(0.0).cuda())
else:
if status == 'train':
term_1.append(Variable(torch.tensor(0.0).cuda(), requires_grad=True))
term_2.append(Variable((torch.tensor(max_dist)).cuda(), requires_grad=True))
else:
term_1.append(torch.tensor(0.0).cuda())
term_2.append(torch.tensor(max_dist).cuda())
else:
if prob_vec_sele.sum() < 1e-3:
if status == 'train':
term_1.append(Variable((torch.tensor(max_dist)).cuda(), requires_grad=True))
term_2.append(Variable(torch.tensor(0.0).cuda(), requires_grad=True))
else:
term_1.append(torch.tensor(max_dist).cuda())
term_2.append(torch.tensor(0.0).cuda())
else:
# find nonzero point in gt
idx_gt = torch.nonzero(gt[i, :, :])
d_matrix = cdist(idx_sele, idx_gt)
# print (d_matrix.shape) # N*M
term_1.append(
(1 / (prob_vec_sele.sum() + 1e-6)) * torch.sum(prob_vec_sele * torch.min(d_matrix, 1)[0]))
p_replicated = prob_vec_sele.view(-1, 1).repeat(1, idx_gt.shape[0])
weighted_d_matrix = (1 - p_replicated) * max_dist + p_replicated * d_matrix
minn = generaliz_mean(weighted_d_matrix, p=-7, dim=0, keepdim=False)
term_2.append(torch.mean(minn))
# print (term_1)
# print (term_2)
term_1 = torch.stack(term_1)
term_2 = torch.stack(term_2)
res = term_1.mean()+term_2.mean()
return res
def huber_loss_3d(x):
bsize, csize, depth, height, width = x.size()
d_x = torch.index_select(x, 4, torch.arange(1, width).cuda()) - torch.index_select(x, 4, torch.arange(width-1).cuda())
d_y = torch.index_select(x, 3, torch.arange(1, height).cuda()) - torch.index_select(x, 3, torch.arange(height-1).cuda())
d_z = torch.index_select(x, 2, torch.arange(1, depth).cuda()) - torch.index_select(x, 2, torch.arange(depth-1).cuda())
err = torch.sum(torch.mul(d_x, d_x))/width + torch.sum(torch.mul(d_y, d_y))/height + torch.sum(torch.mul(d_z, d_z))/depth
err /= bsize
tv_err = torch.sqrt(0.01+err)
return tv_err
def projection(voxels, z_target, temper):
# voxels are transformed from meshes based on affine information of different target plane
# z_target is the z coordinate of the target plane, e.g., SAX is 12,17,22,27,32,37,42,47,52, 2CH is 0, 4CH is 0
v_idx = voxels[:,:,0:2] # [bs, numer_of verties, x/y coordinate]
v_probability = torch.exp((-1) * temper * torch.square(voxels[:, :, 2:3] - z_target)) # [bs, numer_of verties, probability]
return v_idx, v_probability
def distance_metric(pts_A, pts_B, dx):
# Measure the distance errors between the contours of two segmentations
# The manual contours are drawn on 2D slices.
# We calculate contour to contour distance for each slice.
# pts_A is N*2, pts_B is M*2
if pts_A.shape[0] > 0 and pts_B.shape[0] > 0:
# Distance matrix between point sets
M = np.zeros((pts_A.shape[0], pts_B.shape[0]))
for i in range(pts_A.shape[0]):
for j in range(pts_B.shape[0]):
M[i, j] = np.linalg.norm(pts_A[i, :] - pts_B[j, :])
# Mean distance and hausdorff distance
md = 0.5 * (np.mean(np.min(M, axis=0)) + np.mean(np.min(M, axis=1))) * dx
hd = np.max([np.max(np.min(M, axis=0)), np.max(np.min(M, axis=1))]) * dx
else:
md = None
hd = None
return md, hd
def slice_2D(v_hat_es_cp, slice_num):
idx_x = v_hat_es_cp[0, :, 0][torch.abs(v_hat_es_cp[0, :, 2] - slice_num) < 0.3]
idx_y = v_hat_es_cp[0, :, 1][torch.abs(v_hat_es_cp[0, :, 2] - slice_num) < 0.3]
idx_x_t = np.round(idx_x.detach().cpu().numpy()).astype(np.int16)
idx_y_t = np.round(idx_y.detach().cpu().numpy()).astype(np.int16)
idx = np.stack((idx_x_t, idx_y_t), 1)
return idx
def compute_sa_mcd_hd(v_sa_hat_es_cp, contour_sa_es, sliceall):
mcd_sa_allslice = []
hd_sa_allslice = []
slice_number = [1,4,7]
threeslice = [sliceall[slice_number[0]], sliceall[slice_number[1]], sliceall[slice_number[2]]]
print (threeslice)
for i in range(len(threeslice)):
idx_sa = slice_2D(v_sa_hat_es_cp, threeslice[i])
idx_sa_gt = np.stack(np.nonzero(contour_sa_es[slice_number[i], :, :]), 1)
mcd_sa, hd_sa = distance_metric(idx_sa, idx_sa_gt, 1.25)
if (mcd_sa != None) and (hd_sa != None):
mcd_sa_allslice.append(mcd_sa)
hd_sa_allslice.append(hd_sa)
mean_mcd_sa_allslices = np.mean(mcd_sa_allslice) if mcd_sa_allslice else None
mean_hd_sa_allslices = np.mean(hd_sa_allslice) if hd_sa_allslice else None
return mean_mcd_sa_allslices, mean_hd_sa_allslices
def FBoundary(pred_contour, gt_contour, bound_th=2):
bound_pix = bound_th if bound_th >= 1 else \
np.ceil(bound_th * np.linalg.norm(pred_contour.shape))
pred_dil = binary_dilation(pred_contour, disk(bound_pix))
gt_dil = binary_dilation(gt_contour, disk(bound_pix))
# Get the intersection
gt_match = gt_contour * pred_dil
pred_match = pred_contour * gt_dil
# Area of the intersection
n_pred = np.sum(pred_contour)
n_gt = np.sum(gt_contour)
# % Compute precision and recall
if n_pred == 0 and n_gt > 0:
precision = 1
recall = 0
elif n_pred > 0 and n_gt == 0:
precision = 0
recall = 1
elif n_pred == 0 and n_gt == 0:
precision = 1
recall = 1
else:
precision = np.sum(pred_match) / float(n_pred)
recall = np.sum(gt_match) / float(n_gt)
# Compute F measure
if precision + recall == 0:
Fscore = None
else:
Fscore = 2 * precision * recall / (precision + recall)
return Fscore
def compute_sa_Fboundary(v_sa_hat_es_cp, contour_sa_es, sliceall, height, width):
bfscore_all = []
for i in range(len(sliceall)):
idx_sa = slice_2D(v_sa_hat_es_cp, sliceall[i])
sa_pred = np.zeros(shape=(height, width))
for j in range(idx_sa.shape[0]):
sa_pred[idx_sa[j,0], idx_sa[j,1]] = 1
Fscore_1 = FBoundary(sa_pred, contour_sa_es[i,:,:], 1)
Fscore_2 = FBoundary(sa_pred, contour_sa_es[i,:,:], 2)
Fscore_3 = FBoundary(sa_pred, contour_sa_es[i,:,:], 3)
Fscore_4 = FBoundary(sa_pred, contour_sa_es[i,:,:], 4)
Fscore_5 = FBoundary(sa_pred, contour_sa_es[i,:,:], 5)
if (Fscore_1 != None):
Fscore = (Fscore_1+Fscore_2+Fscore_3+Fscore_4+Fscore_5)/5.0
bfscore_all.append(Fscore)
mean_bfscore = np.mean(bfscore_all) if bfscore_all else None
return mean_bfscore
def compute_la_Fboundary(pred_contour, gt_contour):
Fscore_1 = FBoundary(pred_contour, gt_contour, 1)
Fscore_2 = FBoundary(pred_contour, gt_contour, 2)
Fscore_3 = FBoundary(pred_contour, gt_contour, 3)
Fscore_4 = FBoundary(pred_contour, gt_contour, 4)
Fscore_5 = FBoundary(pred_contour, gt_contour, 5)
if (Fscore_1 != None):
Fscore = (Fscore_1+Fscore_2+Fscore_3+Fscore_4+Fscore_5)/5.0
else:
Fscore = None
return Fscore
def projection_weightHD_loss_SA(v_sa_hat_ed_cp, temper, height, width, depth, gt_mesh2seg_sa, status):
weightHD_loss = []
for i in range(depth-1):
v_sa_idx_ed, w_sa_ed = projection(v_sa_hat_ed_cp, i, temper)
slice_loss = weightedHausdorff_batch(v_sa_idx_ed, w_sa_ed, gt_mesh2seg_sa[:,:,:,i], height, width, temper, status)
weightHD_loss.append(slice_loss)
weightHD_loss = torch.stack(weightHD_loss)
loss_aver = torch.mean(weightHD_loss)
return loss_aver