[54b284]: / network_motion.py

Download this file

253 lines (189 with data), 11.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
from torch import nn
import torch.nn.functional as F
def relu():
return nn.ReLU(inplace=True)
def conv(in_channels, out_channels, kernel_size=(3,3,3), stride=(1,1,1), padding = 1, nonlinearity = relu):
conv_layer = nn.Conv3d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, bias = False)
nll_layer = nonlinearity()
bn_layer = nn.BatchNorm3d(out_channels)
layers = [conv_layer, bn_layer, nll_layer]
return nn.Sequential(*layers)
def deconv(in_channels, out_channels, kernel_size=(3,3,3), stride=(1,1,1), padding = 1, nonlinearity = relu):
conv_layer = nn.ConvTranspose3d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, output_padding = 1, bias = False)
nll_layer = nonlinearity()
bn_layer = nn.BatchNorm3d(out_channels)
layers = [conv_layer, bn_layer, nll_layer]
return nn.Sequential(*layers)
def conv_blocks_2(in_channels, out_channels, strides=(1,1,1)):
conv1 = conv(in_channels, out_channels, stride = strides)
conv2 = conv(out_channels, out_channels, stride=(1,1,1))
layers = [conv1, conv2]
return nn.Sequential(*layers)
def conv_blocks_3(in_channels, out_channels, strides=(1,1,1)):
conv1 = conv(in_channels, out_channels, stride = strides)
conv2 = conv(out_channels, out_channels, stride=(1,1,1))
conv3 = conv(out_channels, out_channels, stride=(1,1,1))
layers = [conv1, conv2, conv3]
return nn.Sequential(*layers)
def fullyconnect(in_features, out_features, out_channels, nonlinearity = relu):
fc_layer = nn.Linear(in_features = in_features, out_features= out_features, bias = False)
nll_layer = nonlinearity()
bn_layer = nn.BatchNorm1d(out_channels)
layers = [fc_layer, bn_layer, nll_layer]
return nn.Sequential(*layers)
def conv_2D(in_channels, out_channels, kernel_size=3, stride=1, padding = 1, nonlinearity = relu):
conv_layer = nn.Conv2d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, bias = False)
nll_layer = nonlinearity()
bn_layer = nn.BatchNorm2d(out_channels)
layers = [conv_layer, bn_layer, nll_layer]
return nn.Sequential(*layers)
def conv_1D(in_channels, out_channels, kernel_size=3, stride=1, padding = 1, nonlinearity = relu):
conv_layer = nn.Conv1d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, bias = False)
nll_layer = nonlinearity()
bn_layer = nn.BatchNorm2d(out_channels)
layers = [conv_layer, bn_layer, nll_layer]
return nn.Sequential(*layers)
def deconv_2D(in_channels, out_channels, kernel_size=3, stride=1, padding = 1, nonlinearity = relu):
conv_layer = nn.ConvTranspose2d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, output_padding = 1, bias = False)
nll_layer = nonlinearity()
bn_layer = nn.BatchNorm2d(out_channels)
layers = [conv_layer, bn_layer, nll_layer]
return nn.Sequential(*layers)
def conv_blocks_2_2D(in_channels, out_channels, strides=1):
conv1 = conv_2D(in_channels, out_channels, stride = strides)
conv2 = conv_2D(out_channels, out_channels, stride=1)
layers = [conv1, conv2]
return nn.Sequential(*layers)
def conv_blocks_3_2D(in_channels, out_channels, strides=1):
conv1 = conv_2D(in_channels, out_channels, stride = strides)
conv2 = conv_2D(out_channels, out_channels, stride=1)
conv3 = conv_2D(out_channels, out_channels, stride=1)
layers = [conv1, conv2, conv3]
return nn.Sequential(*layers)
# Flatten layer
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
def generate_grid(x, offset):
x_shape = x.size()
grid_d, grid_w, grid_h = torch.meshgrid([torch.linspace(-1, 1, x_shape[2]), torch.linspace(-1, 1, x_shape[3]), torch.linspace(-1, 1, x_shape[4])]) # (h, w, h)
grid_d = grid_d.cuda().float()
grid_w = grid_w.cuda().float()
grid_h = grid_h.cuda().float()
grid_d = nn.Parameter(grid_d, requires_grad=False)
grid_w = nn.Parameter(grid_w, requires_grad=False)
grid_h = nn.Parameter(grid_h, requires_grad=False)
offset_h, offset_w, offset_d = torch.split(offset, 1, 1)
offset_d = offset_d.contiguous().view(-1, int(x_shape[2]), int(x_shape[3]), int(x_shape[4])) # (b*c, d, w, h)
offset_w = offset_w.contiguous().view(-1, int(x_shape[2]), int(x_shape[3]), int(x_shape[4])) # (b*c, d, w, h)
offset_h = offset_h.contiguous().view(-1, int(x_shape[2]), int(x_shape[3]), int(x_shape[4])) # (b*c, d, w, h)
offset_d = grid_d + offset_d
offset_w = grid_w + offset_w
offset_h = grid_h + offset_h
offsets = torch.stack((offset_h, offset_w, offset_d), 4) # should have the same order as offset
return offsets
def transform(seg_source, loc, mode='bilinear'):
grid = generate_grid(seg_source, loc)
# seg_source: NCDHW
# grid: NDHW3
out = F.grid_sample(seg_source, grid, mode=mode, align_corners=True)
return out
class MotionMesh_25d(nn.Module):
"""Deformable registration network with input from image space """
def __init__(self, n_ch=64, mesh_dim=10000):
super(MotionMesh_25d, self).__init__()
self.conv_blocks_2D = [conv_blocks_2_2D(n_ch, 64), conv_blocks_2_2D(64, 128, 2), conv_blocks_3_2D(128, 256, 2),
conv_blocks_3_2D(256, 512, 2), conv_blocks_3_2D(512, 512, 2)]
self.conv_list_2D = []
for in_filters in [128, 256, 512, 1024, 1024]:
self.conv_list_2D += [conv_2D(in_filters, 64)]
self.conv_blocks_2D = nn.Sequential(*self.conv_blocks_2D)
self.conv_list_2D = nn.Sequential(*self.conv_list_2D)
self.conv6 = conv_2D(64 * 15, 64, 1, 1, 0)
self.conv7 = conv_2D(64, 64, 1, 1, 0)
self.conv3d9 = conv(1, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1))
self.conv3d10 = conv(32, 64, kernel_size=(3, 3, 3), stride=(2, 2, 2))
self.conv3d10_1 = conv(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1))
self.conv3d11 = conv(64, 128, kernel_size=(3, 3, 3), stride=(2, 2, 2))
self.conv3d11_1 = conv(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1))
self.conv3d12 = conv(128, 256, kernel_size=(3, 3, 3), stride=(2, 2, 2))
self.conv3d12_1 = conv(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1))
self.conv3d13 = deconv(256, 128, kernel_size=(3, 3, 3), stride=(2, 2, 2))
self.conv3d13_1 = conv(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1))
self.conv3d14 = deconv(128, 64, kernel_size=(3, 3, 3), stride=(2, 2, 2))
self.conv3d14_1 = conv(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1))
self.conv3d15 = deconv(64, 32, kernel_size=(3, 3, 3), stride=(2, 2, 2))
self.conv3d15_1 = conv(32, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1))
self.conv3d16 = nn.Conv3d(32, 3, 1, stride=(1, 1, 1))
def forward(self, x_sa, x_saed, x_2ch, x_2ched, x_4ch, x_4ched):
# x: source image; x_pred: target image;
net = {}
net['conv0_sa'] = x_sa
net['conv0_sa_ed'] = x_saed
net['conv0_2ch'] = x_2ch
net['conv0_2ch_ed'] = x_2ched
net['conv0_4ch'] = x_4ch
net['conv0_4ch_ed'] = x_4ched
# 5 refers to 5 output or 5 blocks
for i in range(5):
net['conv%d_sa' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_sa' % i])
net['conv%d_sa_ed' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_sa_ed' % i])
net['conv%d_2ch' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_2ch' % i])
net['conv%d_2ch_ed' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_2ch_ed' % i])
net['conv%d_4ch' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_4ch' % i])
net['conv%d_4ch_ed' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_4ch_ed' % i])
net['concat%d_sa' % (i + 1)] = torch.cat((net['conv%d_sa' % (i + 1)], net['conv%d_sa_ed' % (i + 1)]), 1)
net['concat%d_2ch' % (i + 1)] = torch.cat((net['conv%d_2ch' % (i + 1)], net['conv%d_2ch_ed' % (i + 1)]), 1)
net['concat%d_4ch' % (i + 1)] = torch.cat((net['conv%d_4ch' % (i + 1)], net['conv%d_4ch_ed' % (i + 1)]), 1)
net['out%d_sa' % (i + 1)] = self.conv_list_2D[i](net['concat%d_sa' % (i + 1)])
net['out%d_2ch' % (i + 1)] = self.conv_list_2D[i](net['concat%d_2ch' % (i + 1)])
net['out%d_4ch' % (i + 1)] = self.conv_list_2D[i](net['concat%d_4ch' % (i + 1)])
if i > 0:
# upsample
# only upsample HW dimension
# net['out%d_sa_up' % (i + 1)] = F.interpolate(net['out%d_sa' % (i + 1)],
# scale_factor=(1, 2 ** i, 2 ** i), mode='trilinear',
# align_corners=True)
# upsample DHW dimension
net['out%d_sa_up' % (i + 1)] = F.interpolate(net['out%d_sa' % (i + 1)], scale_factor=2 ** i, mode='bilinear', align_corners=True)
net['out%d_2ch_up' % (i + 1)] = F.interpolate(net['out%d_2ch' % (i + 1)], scale_factor=2 ** i, mode='bilinear', align_corners=True)
net['out%d_4ch_up' % (i + 1)] = F.interpolate(net['out%d_4ch' % (i + 1)], scale_factor=2 ** i, mode='bilinear', align_corners=True)
# output: net['out1_sa'], net['out2_sa_up'], net['out3_sa_up'], net['out4_sa_up'], net['out5_sa_up'] are used for multiscale fusion
net['concat_sa'] = torch.cat(
(net['out1_sa'], net['out2_sa_up'], net['out3_sa_up'], net['out4_sa_up'], net['out5_sa_up']), 1)
net['concat_2ch'] = torch.cat(
(net['out1_2ch'], net['out2_2ch_up'], net['out3_2ch_up'], net['out4_2ch_up'], net['out5_2ch_up']), 1)
net['concat_4ch'] = torch.cat(
(net['out1_4ch'], net['out2_4ch_up'], net['out3_4ch_up'], net['out4_4ch_up'], net['out5_4ch_up']), 1)
net['concat'] = torch.cat((net['concat_sa'], net['concat_2ch'], net['concat_4ch']), 1)
net['comb_1'] = self.conv6(net['concat'])
net['comb_2'] = self.conv7(net['comb_1'])
net['conv3d0f'] = net['comb_2'].unsqueeze(1)
net['conv3d_1'] = self.conv3d9(net['conv3d0f'])
net['conv3d_2'] = self.conv3d10_1(self.conv3d10(net['conv3d_1']))
net['conv3d_3'] = self.conv3d11_1(self.conv3d11(net['conv3d_2']))
net['conv3d_4'] = self.conv3d12_1(self.conv3d12(net['conv3d_3']))
net['conv3d_5'] = self.conv3d13_1(self.conv3d13(net['conv3d_4']))
net['conv3d_6'] = self.conv3d14_1(self.conv3d14(net['conv3d_5']))
net['conv3d_7'] = self.conv3d15_1(self.conv3d15(net['conv3d_6']))
net['out'] = torch.tanh(self.conv3d16(net['conv3d_7']))
return net
class Mesh_2d(nn.Module):
"""Deformable registration network with input from image space """
def __init__(self, n_ch=1):
super(Mesh_2d, self).__init__()
self.conv1 = conv_2D(n_ch, 32)
self.conv2 = conv_2D(32, 64)
def forward(self, x_2ch, x_2ched, x_4ch, x_4ched):
# x: source image; x_pred: target image;
net = {}
net['conv1_2ch'] = self.conv1(x_2ch)
net['conv1_4ch'] = self.conv1(x_4ch)
net['conv1s_2ch'] = self.conv1(x_2ched)
net['conv1s_4ch'] = self.conv1(x_4ched)
net['conv2_2ch'] = self.conv2(net['conv1_2ch'])
net['conv2_4ch'] = self.conv2(net['conv1_4ch'])
net['conv2s_2ch'] = self.conv2(net['conv1s_2ch'])
net['conv2s_4ch'] = self.conv2(net['conv1s_4ch'])
return net