--- a +++ b/train_motion.py @@ -0,0 +1,480 @@ +import torch.nn as nn +import numpy as np +import itertools +import os +import sys + +import torch.optim as optim +from torch.utils.data import DataLoader +from torch.autograd import Variable +from tqdm import tqdm +import time +from torch.utils.tensorboard import SummaryWriter +from pytorch3d.structures import Meshes +from pytorch3d import loss + +from network_motion import * +from dataio_motion import * +from utils import * + + +lr = 1e-4 +n_worker = 4 +bs = 8 +n_epoch = 400 +base_err = 1000 + +w_smooth = 150 +w_reg = 20 +w_h = 0.5 +width = 128 +height = 128 +depth = 64 +sa_idx = [12, 17, 22, 27, 32, 37, 42, 47, 52] +temper = 3 + + + +model_save_path = './models/model_motion' +if not os.path.exists(model_save_path): + os.makedirs(model_save_path) + +# pytorch only saves the last model +Motion_save_path = os.path.join(model_save_path, 'motionEst.pth') +Motion_LA_save_path = os.path.join(model_save_path, 'multiview.pth') + +flow_criterion = nn.MSELoss() +MotionNet = MotionMesh_25d().cuda() +MV_LA = Mesh_2d().cuda() + +optimizer = optim.Adam(filter(lambda p: p.requires_grad, + itertools.chain(MotionNet.parameters(), MV_LA.parameters())), lr=lr) +Tensor = torch.cuda.FloatTensor +TensorLong = torch.cuda.LongTensor + +# visualisation +writer = SummaryWriter('./runs/model_motion') + + + +def train(epoch): + MotionNet.train() + MV_LA.train() + + epoch_loss = [] + epoch_seg_loss = [] + epoch_smooth_loss = [] + epoch_reg_loss = [] + epoch_huber_loss = [] + + Myo_dice_sa = [] + Myo_dice_2ch = [] + Myo_dice_4ch = [] + + + for batch_idx, batch in tqdm(enumerate(training_data_loader, 1), + total=len(training_data_loader)): + + img_sa_t, img_sa_ed, img_2ch_t, img_2ch_ed, img_4ch_t, img_4ch_ed, \ + contour_sa, contour_2ch, contour_4ch, \ + vertex_ed, faces, affine_inv, affine, origin = batch + + + x_sa_t = Variable(img_sa_t.type(Tensor)) + x_sa_ed = Variable(img_sa_ed.type(Tensor)) + x_2ch_t = Variable(img_2ch_t.type(Tensor)) + x_2ch_ed = Variable(img_2ch_ed.type(Tensor)) + x_4ch_t = Variable(img_4ch_t.type(Tensor)) + x_4ch_ed = Variable(img_4ch_ed.type(Tensor)) + + x_sa_t_5D = Variable(img_sa_t.unsqueeze(1).type(Tensor)) + x_sa_ed_5D = Variable(img_sa_ed.unsqueeze(1).type(Tensor)) + + + con_sa = Variable(contour_sa.type(TensorLong)) # [bs, slices, H, W] + con_2ch = Variable(contour_2ch.type(TensorLong)) # [bs, H, W] + con_4ch = Variable(contour_4ch.type(TensorLong)) # [bs, H, W] + + aff_sa_inv = Variable(affine_inv[:, 0,:,:].type(Tensor)) + aff_sa = Variable(affine[:, 0,:,:].type(Tensor)) + aff_2ch_inv = Variable(affine_inv[:, 1,:,:].type(Tensor)) + aff_4ch_inv = Variable(affine_inv[:, 2,:,:].type(Tensor)) + + origin_sa = Variable(origin[:, 0:1, :].type(Tensor)) + origin_2ch = Variable(origin[:, 1:2, :].type(Tensor)) + origin_4ch = Variable(origin[:, 2:3, :].type(Tensor)) + + vertex_0 = Variable(vertex_ed.permute(0,2,1).type(Tensor)) # [bs, 3, number of vertices] + faces_0 = Variable(faces.type(Tensor)) # [bs, number of faces, 3] + + + optimizer.zero_grad() + + net_la = MV_LA(x_2ch_t, x_2ch_ed, x_4ch_t, x_4ch_ed) + net_sa = MotionNet(x_sa_t, x_sa_ed, net_la['conv2_2ch'], net_la['conv2s_2ch'], net_la['conv2_4ch'], net_la['conv2s_4ch']) + + # ---------------sample from 3D motion fields + #translate coordinate + v_ed_o = torch.matmul(aff_sa_inv[:, :3, :3], vertex_0) + aff_sa_inv[:, :3, 3:4] + v_ed = v_ed_o.permute(0, 2, 1) - origin_sa # [bs, number of vertices,3] + + # normalize translated coordinate (image space) to [-1,1] + v_ed_x = (v_ed[:, :, 0:1] - (width / 2)) / (width / 2) + v_ed_y = (v_ed[:, :, 1:2] - (height / 2)) / (height / 2) + v_ed_z = (v_ed[:, :, 2:3] - (depth / 2)) / (depth / 2) + v_ed_norm = torch.cat((v_ed_x, v_ed_y, v_ed_z), 2) + v_ed_norm_expand = v_ed_norm.unsqueeze(1).unsqueeze(1) # [bs, 1, 1,number of vertices,3] + + # sample from 3D motion field + pxx = F.grid_sample(net_sa['out'][:, 0:1], v_ed_norm_expand, align_corners=True).transpose(4, 3) + pyy = F.grid_sample(net_sa['out'][:, 1:2], v_ed_norm_expand, align_corners=True).transpose(4, 3) + pzz = F.grid_sample(net_sa['out'][:, 2:3], v_ed_norm_expand, align_corners=True).transpose(4, 3) + delta_p = torch.cat((pxx, pyy, pzz), 4) + # updata coor (image space) + # print (v_ed.shape, delta_p.shape) + v_t_norm_expand = v_ed_norm_expand + delta_p # [bs, 1, 1,number of vertices,3] + # t frame + v_t_norm = v_t_norm_expand.squeeze(1).squeeze(1) + v_t_x = v_t_norm[:, :, 0:1] * (width / 2) + (width / 2) + v_t_y = v_t_norm[:, :, 1:2] * (height / 2) + (height / 2) + v_t_z = v_t_norm[:, :, 2:3] * (depth / 2) + (depth / 2) + v_t_crop = torch.cat((v_t_x, v_t_y, v_t_z), 2) + # translate back to mesh space + v_t = v_t_crop + origin_sa # [bs, number of vertices,3] + pred_vertex_t = torch.matmul(aff_sa[:, :3, :3], v_t.permute(0,2,1)) + aff_sa[:, :3, 3:4] # [bs, 3, number of vertices] + # print (pred_vertex_t.shape) + + + pred_sa_ed = transform(x_sa_t_5D, net_sa['out'], mode='bilinear') + + # -------------- differentialable slicer + + # coordinate transformation np.dot(aff_sa_SR_inv[:3,:3], points_ED.T) + aff_sa_SR_inv[:3,3:4] + v_sa_hat_t_o = torch.matmul(aff_sa_inv[:, :3, :3], pred_vertex_t) + aff_sa_inv[:, :3, 3:4] + v_sa_hat_t = v_sa_hat_t_o.permute(0, 2, 1) - origin_sa + # print (v_sa_hat_t.shape) + v_2ch_hat_t_o = torch.matmul(aff_2ch_inv[:, :3, :3], pred_vertex_t) + aff_2ch_inv[:, :3, 3:4] + v_2ch_hat_t = v_2ch_hat_t_o.permute(0, 2, 1) - origin_2ch + v_4ch_hat_t_o = torch.matmul(aff_4ch_inv[:, :3, :3], pred_vertex_t) + aff_4ch_inv[:, :3, 3:4] + v_4ch_hat_t = v_4ch_hat_t_o.permute(0,2, 1) - origin_4ch + + # project vertices satisfying threshood + # project to SAX slices, project all vertices to a target plane, + # vertices selection is moved to loss computation function + v_sa_hat_t_x = torch.clamp(v_sa_hat_t[:, :, 0:1], min=0, max=height - 1) + v_sa_hat_t_y = torch.clamp(v_sa_hat_t[:, :, 1:2], min=0, max=width - 1) + v_sa_hat_t_cp = torch.cat((v_sa_hat_t_x, v_sa_hat_t_y, v_sa_hat_t[:, :, 2:3]), 2) + + v_sa_idx_t_0, w_sa_t_0 = projection(v_sa_hat_t_cp, 12, temper) + # print (v_sa_idx_ed_0.shape, w_sa_ed_0.shape) + v_sa_idx_t_1, w_sa_t_1 = projection(v_sa_hat_t_cp, 17, temper) + v_sa_idx_t_2, w_sa_t_2 = projection(v_sa_hat_t_cp, 22, temper) + v_sa_idx_t_3, w_sa_t_3 = projection(v_sa_hat_t_cp, 27, temper) + v_sa_idx_t_4, w_sa_t_4 = projection(v_sa_hat_t_cp, 32, temper) + v_sa_idx_t_5, w_sa_t_5 = projection(v_sa_hat_t_cp, 37, temper) + v_sa_idx_t_6, w_sa_t_6 = projection(v_sa_hat_t_cp, 42, temper) + v_sa_idx_t_7, w_sa_t_7 = projection(v_sa_hat_t_cp, 47, temper) + v_sa_idx_t_8, w_sa_t_8 = projection(v_sa_hat_t_cp, 52, temper) + + # project to LAX 2CH view + v_2ch_hat_t_x = torch.clamp(v_2ch_hat_t[:, :, 0:1], min=0, max=height - 1) + v_2ch_hat_t_y = torch.clamp(v_2ch_hat_t[:, :, 1:2], min=0, max=width - 1) + v_2ch_hat_t_cp = torch.cat((v_2ch_hat_t_x, v_2ch_hat_t_y, v_2ch_hat_t[:, :, 2:3]), 2) + + v_2ch_idx_t, w_2ch_t = projection(v_2ch_hat_t_cp, 0, temper) + + + # project to LAX 4CH view + v_4ch_hat_t_x = torch.clamp(v_4ch_hat_t[:, :, 0:1], min=0, max=height - 1) + v_4ch_hat_t_y = torch.clamp(v_4ch_hat_t[:, :, 1:2], min=0, max=width - 1) + v_4ch_hat_t_cp = torch.cat((v_4ch_hat_t_x, v_4ch_hat_t_y, v_4ch_hat_t[:, :, 2:3]), 2) + + v_4ch_idx_t, w_4ch_t = projection(v_4ch_hat_t_cp, 0, temper) + + + + # --------------------- Segmentation loss------------------ + loss_seg_sa_t_0 = weightedHausdorff_batch(v_sa_idx_t_0, w_sa_t_0, con_sa[:, 0, :, :], height, width, temper, + 'train') + loss_seg_sa_t_1 = weightedHausdorff_batch(v_sa_idx_t_1, w_sa_t_1, con_sa[:, 1, :, :], height, width, temper, + 'train') + loss_seg_sa_t_2 = weightedHausdorff_batch(v_sa_idx_t_2, w_sa_t_2, con_sa[:, 2, :, :], height, width, temper, + 'train') + loss_seg_sa_t_3 = weightedHausdorff_batch(v_sa_idx_t_3, w_sa_t_3, con_sa[:, 3, :, :], height, width, temper, + 'train') + loss_seg_sa_t_4 = weightedHausdorff_batch(v_sa_idx_t_4, w_sa_t_4, con_sa[:, 4, :, :], height, width, temper, + 'train') + loss_seg_sa_t_5 = weightedHausdorff_batch(v_sa_idx_t_5, w_sa_t_5, con_sa[:, 5, :, :], height, width, temper, + 'train') + loss_seg_sa_t_6 = weightedHausdorff_batch(v_sa_idx_t_6, w_sa_t_6, con_sa[:, 6, :, :], height, width, temper, + 'train') + loss_seg_sa_t_7 = weightedHausdorff_batch(v_sa_idx_t_7, w_sa_t_7, con_sa[:, 7, :, :], height, width, temper, + 'train') + loss_seg_sa_t_8 = weightedHausdorff_batch(v_sa_idx_t_8, w_sa_t_8, con_sa[:, 8, :, :], height, width, temper, + 'train') + loss_seg_2ch_t = weightedHausdorff_batch(v_2ch_idx_t, w_2ch_t, con_2ch, height, width, temper, 'train') + loss_seg_4ch_t = weightedHausdorff_batch(v_4ch_idx_t, w_4ch_t, con_4ch, height, width, temper, 'train') + + loss_seg = (loss_seg_sa_t_0 + loss_seg_sa_t_1 + loss_seg_sa_t_2 + loss_seg_sa_t_3 + + loss_seg_sa_t_4 + loss_seg_sa_t_5 + loss_seg_sa_t_6 + loss_seg_sa_t_7 + loss_seg_sa_t_8) / 9.0 + \ + loss_seg_2ch_t + loss_seg_4ch_t + + + + + #----------------smoothness loss------------ + # print (pred_vertex_t.permute(0,2,1).shape) + trg_mesh = Meshes(verts=list(pred_vertex_t.permute(0, 2, 1)), faces=list(faces_0)) + loss_smooth = loss.mesh_laplacian_smoothing(trg_mesh, method='uniform') + + # ----------------regularization loss------------ + + # define image registration as a regularization term + loss_reg = flow_criterion(pred_sa_ed, x_sa_ed_5D) + + loss_huber = huber_loss_3d(net_sa['out']) + + + loss_all = loss_seg + w_reg*loss_reg + w_smooth * loss_smooth + w_h * loss_huber + + loss_all.backward() + optimizer.step() + + + epoch_loss.append(loss_all.item()) + epoch_seg_loss.append(loss_seg.item()) + epoch_smooth_loss.append(loss_smooth.item()) + epoch_reg_loss.append(loss_reg.item()) + epoch_huber_loss.append(loss_huber.item()) + + + + # tensorboard visulisation + writer.add_scalar("Loss/train", loss_all, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/train_seg", loss_seg, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/train_reg", loss_reg, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/train_smooth", loss_smooth, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/train_huber", loss_huber, epoch * len(training_data_loader) + batch_idx) + + + if batch_idx % 40 == 0: + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss all: {:.6f}, ' + 'Seg Loss: {:.6f}, Reg Loss: {:.6f}, Smooth Loss: {:.6f}, Huber Loss: {:.6f}'.format( + epoch, batch_idx * len(img_sa_t), len(training_data_loader.dataset), + 100. * batch_idx / len(training_data_loader), np.mean(epoch_loss), + np.mean(epoch_seg_loss), np.mean(epoch_reg_loss), np.mean(epoch_smooth_loss), np.mean(epoch_huber_loss), np.mean(Myo_dice_sa), np.mean(Myo_dice_2ch), np.mean(Myo_dice_4ch))) + + # torch.save(model.state_dict(), model_save_path) + # print("Checkpoint saved to {}".format(model_save_path)) + +def val(epoch): + MotionNet.eval() + MV_LA.eval() + + val_loss = [] + val_seg_loss = [] + val_smooth_loss = [] + val_reg_loss = [] + val_huber_loss = [] + + global base_err + for batch_idx, batch in tqdm(enumerate(val_data_loader, 1), + total=len(val_data_loader)): + + img_sa_t, img_sa_ed, img_2ch_t, img_2ch_ed, img_4ch_t, img_4ch_ed, \ + contour_sa, contour_2ch, contour_4ch, \ + vertex_ed, faces, affine_inv, affine, origin = batch + + with torch.no_grad(): + + x_sa_t = img_sa_t.type(Tensor) + x_sa_ed = img_sa_ed.type(Tensor) + x_2ch_t = img_2ch_t.type(Tensor) + x_2ch_ed = img_2ch_ed.type(Tensor) + x_4ch_t = img_4ch_t.type(Tensor) + x_4ch_ed = img_4ch_ed.type(Tensor) + + x_sa_t_5D = img_sa_t.unsqueeze(1).type(Tensor) + x_sa_ed_5D = img_sa_ed.unsqueeze(1).type(Tensor) + + + con_sa = contour_sa.type(TensorLong) # [bs, slices, H, W] + con_2ch = contour_2ch.type(TensorLong) # [bs, H, W] + con_4ch = contour_4ch.type(TensorLong) # [bs, H, W] + + aff_sa_inv = affine_inv[:, 0, :, :].type(Tensor) + aff_sa = affine[:, 0, :, :].type(Tensor) + aff_2ch_inv = affine_inv[:, 1, :, :].type(Tensor) + aff_4ch_inv = affine_inv[:, 2, :, :].type(Tensor) + + origin_sa = origin[:, 0:1, :].type(Tensor) + origin_2ch = origin[:, 1:2, :].type(Tensor) + origin_4ch = origin[:, 2:3, :].type(Tensor) + + vertex_0 = vertex_ed.permute(0, 2, 1).type(Tensor) # [bs, 3, number of vertices] + faces_0 = faces.type(Tensor) # [bs, number of faces, 3] + + + net_la = MV_LA(x_2ch_t, x_2ch_ed, x_4ch_t, x_4ch_ed) + net_sa = MotionNet(x_sa_t, x_sa_ed, net_la['conv2_2ch'], net_la['conv2s_2ch'], net_la['conv2_4ch'], + net_la['conv2s_4ch']) + + # ---------------sample from 3D motion fields + # translate coordinate + v_ed_o = torch.matmul(aff_sa_inv[:, :3, :3], vertex_0) + aff_sa_inv[:, :3, 3:4] + v_ed = v_ed_o.permute(0, 2, 1) - origin_sa # [bs, number of vertices,3] + v_ed_x = (v_ed[:, :, 0:1] - (width / 2)) / (width / 2) + v_ed_y = (v_ed[:, :, 1:2] - (height / 2)) / (height / 2) + v_ed_z = (v_ed[:, :, 2:3] - (depth / 2)) / (depth / 2) + v_ed_norm = torch.cat((v_ed_x, v_ed_y, v_ed_z), 2) + v_ed_norm_expand = v_ed_norm.unsqueeze(1).unsqueeze(1) # [bs, 1, 1,number of vertices,3] + + # sample from 3D motion field + pxx = F.grid_sample(net_sa['out'][:, 0:1], v_ed_norm_expand, align_corners=True).transpose(4, 3) + pyy = F.grid_sample(net_sa['out'][:, 1:2], v_ed_norm_expand, align_corners=True).transpose(4, 3) + pzz = F.grid_sample(net_sa['out'][:, 2:3], v_ed_norm_expand, align_corners=True).transpose(4, 3) + delta_p = torch.cat((pxx, pyy, pzz), 4) + # updata coor (image space) + # print (v_ed.shape, delta_p.shape) + v_t_norm_expand = v_ed_norm_expand + delta_p # [bs, 1, 1,number of vertices,3] + # t frame + v_t_norm = v_t_norm_expand.squeeze(1).squeeze(1) + v_t_x = v_t_norm[:, :, 0:1] * (width / 2) + (width / 2) + v_t_y = v_t_norm[:, :, 1:2] * (height / 2) + (height / 2) + v_t_z = v_t_norm[:, :, 2:3] * (depth / 2) + (depth / 2) + v_t_crop = torch.cat((v_t_x, v_t_y, v_t_z), 2) + # translate back to mesh space + v_t = v_t_crop + origin_sa # [bs, number of vertices,3] + pred_vertex_t = torch.matmul(aff_sa[:, :3, :3], v_t.permute(0, 2, 1)) + aff_sa[:, :3, + 3:4] # [bs, 3, number of vertices] + # print (pred_vertex_t.shape) + + + pred_sa_ed = transform(x_sa_t_5D, net_sa['out'], mode='bilinear') + + # -------------- differentialable slicer + + # coordinate transformation np.dot(aff_sa_SR_inv[:3,:3], points_ED.T) + aff_sa_SR_inv[:3,3:4] + v_sa_hat_t_o = torch.matmul(aff_sa_inv[:, :3, :3], pred_vertex_t) + aff_sa_inv[:, :3, 3:4] + v_sa_hat_t = v_sa_hat_t_o.permute(0, 2, 1) - origin_sa + # print (v_sa_hat_t.shape) + v_2ch_hat_t_o = torch.matmul(aff_2ch_inv[:, :3, :3], pred_vertex_t) + aff_2ch_inv[:, :3, 3:4] + v_2ch_hat_t = v_2ch_hat_t_o.permute(0, 2, 1) - origin_2ch + v_4ch_hat_t_o = torch.matmul(aff_4ch_inv[:, :3, :3], pred_vertex_t) + aff_4ch_inv[:, :3, 3:4] + v_4ch_hat_t = v_4ch_hat_t_o.permute(0, 2, 1) - origin_4ch + + # project vertices satisfying threshood + # project to SAX slices, project all vertices to a target plane, + # vertices selection is moved to loss computation function + v_sa_hat_t_x = torch.clamp(v_sa_hat_t[:, :, 0:1], min=0, max=height - 1) + v_sa_hat_t_y = torch.clamp(v_sa_hat_t[:, :, 1:2], min=0, max=width - 1) + v_sa_hat_t_cp = torch.cat((v_sa_hat_t_x, v_sa_hat_t_y, v_sa_hat_t[:, :, 2:3]), 2) + + v_sa_idx_t_0, w_sa_t_0 = projection(v_sa_hat_t_cp, 12, temper) + # print (v_sa_idx_ed_0.shape, w_sa_ed_0.shape) + v_sa_idx_t_1, w_sa_t_1 = projection(v_sa_hat_t_cp, 17, temper) + v_sa_idx_t_2, w_sa_t_2 = projection(v_sa_hat_t_cp, 22, temper) + v_sa_idx_t_3, w_sa_t_3 = projection(v_sa_hat_t_cp, 27, temper) + v_sa_idx_t_4, w_sa_t_4 = projection(v_sa_hat_t_cp, 32, temper) + v_sa_idx_t_5, w_sa_t_5 = projection(v_sa_hat_t_cp, 37, temper) + v_sa_idx_t_6, w_sa_t_6 = projection(v_sa_hat_t_cp, 42, temper) + v_sa_idx_t_7, w_sa_t_7 = projection(v_sa_hat_t_cp, 47, temper) + v_sa_idx_t_8, w_sa_t_8 = projection(v_sa_hat_t_cp, 52, temper) + + # project to LAX 2CH view + v_2ch_hat_t_x = torch.clamp(v_2ch_hat_t[:, :, 0:1], min=0, max=height - 1) + v_2ch_hat_t_y = torch.clamp(v_2ch_hat_t[:, :, 1:2], min=0, max=width - 1) + v_2ch_hat_t_cp = torch.cat((v_2ch_hat_t_x, v_2ch_hat_t_y, v_2ch_hat_t[:, :, 2:3]), 2) + + v_2ch_idx_t, w_2ch_t = projection(v_2ch_hat_t_cp, 0, temper) + + # project to LAX 4CH view + v_4ch_hat_t_x = torch.clamp(v_4ch_hat_t[:, :, 0:1], min=0, max=height - 1) + v_4ch_hat_t_y = torch.clamp(v_4ch_hat_t[:, :, 1:2], min=0, max=width - 1) + v_4ch_hat_t_cp = torch.cat((v_4ch_hat_t_x, v_4ch_hat_t_y, v_4ch_hat_t[:, :, 2:3]), 2) + + v_4ch_idx_t, w_4ch_t = projection(v_4ch_hat_t_cp, 0, temper) + + # --------------------- Segmentation loss------------------ + loss_seg_sa_t_0 = weightedHausdorff_batch(v_sa_idx_t_0, w_sa_t_0, con_sa[:, 0, :, :], height, width, temper, + 'val') + loss_seg_sa_t_1 = weightedHausdorff_batch(v_sa_idx_t_1, w_sa_t_1, con_sa[:, 1, :, :], height, width, temper, + 'val') + loss_seg_sa_t_2 = weightedHausdorff_batch(v_sa_idx_t_2, w_sa_t_2, con_sa[:, 2, :, :], height, width, temper, + 'val') + loss_seg_sa_t_3 = weightedHausdorff_batch(v_sa_idx_t_3, w_sa_t_3, con_sa[:, 3, :, :], height, width, temper, + 'val') + loss_seg_sa_t_4 = weightedHausdorff_batch(v_sa_idx_t_4, w_sa_t_4, con_sa[:, 4, :, :], height, width, temper, + 'val') + loss_seg_sa_t_5 = weightedHausdorff_batch(v_sa_idx_t_5, w_sa_t_5, con_sa[:, 5, :, :], height, width, temper, + 'val') + loss_seg_sa_t_6 = weightedHausdorff_batch(v_sa_idx_t_6, w_sa_t_6, con_sa[:, 6, :, :], height, width, temper, + 'val') + loss_seg_sa_t_7 = weightedHausdorff_batch(v_sa_idx_t_7, w_sa_t_7, con_sa[:, 7, :, :], height, width, temper, + 'val') + loss_seg_sa_t_8 = weightedHausdorff_batch(v_sa_idx_t_8, w_sa_t_8, con_sa[:, 8, :, :], height, width, temper, + 'val') + loss_seg_2ch_t = weightedHausdorff_batch(v_2ch_idx_t, w_2ch_t, con_2ch, height, width, temper, 'val') + loss_seg_4ch_t = weightedHausdorff_batch(v_4ch_idx_t, w_4ch_t, con_4ch, height, width, temper, 'val') + + loss_seg = (loss_seg_sa_t_0 + loss_seg_sa_t_1 + loss_seg_sa_t_2 + loss_seg_sa_t_3 + + loss_seg_sa_t_4 + loss_seg_sa_t_5 + loss_seg_sa_t_6 + loss_seg_sa_t_7 + loss_seg_sa_t_8) / 9.0 + \ + loss_seg_2ch_t + loss_seg_4ch_t + + # ----------------smoothness loss------------ + # print (pred_vertex_t.permute(0,2,1).shape) + trg_mesh = Meshes(verts=list(pred_vertex_t.permute(0, 2, 1)), faces=list(faces_0)) + loss_smooth = loss.mesh_laplacian_smoothing(trg_mesh, method='uniform') + + # ----------------regularization loss------------ + + loss_reg = flow_criterion(pred_sa_ed, x_sa_ed_5D) + + loss_huber = huber_loss_3d(net_sa['out']) + + loss_all = loss_seg + w_reg * loss_reg + w_smooth * loss_smooth + w_h * loss_huber + + + val_loss.append(loss_all.item()) + val_seg_loss.append(loss_seg.item()) + val_smooth_loss.append(loss_smooth.item()) + val_reg_loss.append(loss_reg.item()) + val_huber_loss.append(loss_huber.item()) + + if batch_idx == 1: + # tensorboard visulisation + writer.add_scalar("Loss/val", loss_all, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/val_seg", loss_seg, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/val_reg", loss_reg, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/val_smooth", loss_smooth, epoch * len(training_data_loader) + batch_idx) + writer.add_scalar("Loss/val_huber", loss_huber, epoch * len(training_data_loader) + batch_idx) + + + if np.mean(val_loss) < base_err: + torch.save(MotionNet.state_dict(), Motion_save_path) + torch.save(MV_LA.state_dict(), Motion_LA_save_path) + base_err = np.mean(val_loss) + + + +data_path = '/train_data_path' +train_set = TrainDataset(data_path) +# loading the data +training_data_loader = DataLoader(dataset=train_set, num_workers=n_worker, batch_size=bs, shuffle=True) + +val_data_path = '/val_data_pathl' +val_set = ValDataset(val_data_path) +val_data_loader = DataLoader(dataset=val_set, num_workers=n_worker, batch_size=bs, shuffle=False) + + +for epoch in range(0, n_epoch + 1): + start = time.time() + train(epoch) + end = time.time() + print("training took {:.8f}".format(end-start)) + + print('Epoch {}'.format(epoch)) + start = time.time() + val(epoch) + end = time.time() + print("validation took {:.8f}".format(end - start))