Diff of /network_reconstruction.py [000000] .. [721c7a]

Switch to unified view

a b/network_reconstruction.py
1
import torch
2
from torch import nn
3
import torch.nn.functional as F
4
5
def relu():
6
    return nn.ReLU(inplace=True)
7
8
9
def conv(in_channels, out_channels, kernel_size=(3,3,3), stride=(1,1,1), padding = 1, nonlinearity = relu):
10
    conv_layer = nn.Conv3d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, bias = False)
11
12
    nll_layer = nonlinearity()
13
    bn_layer = nn.BatchNorm3d(out_channels)
14
15
    layers = [conv_layer, bn_layer, nll_layer]
16
    return nn.Sequential(*layers)
17
18
def deconv(in_channels, out_channels, kernel_size=(3,3,3), stride=(1,1,1), padding = 1, nonlinearity = relu):
19
    conv_layer = nn.ConvTranspose3d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, output_padding = 1, bias = False)
20
21
    nll_layer = nonlinearity()
22
    bn_layer = nn.BatchNorm3d(out_channels)
23
24
    layers = [conv_layer, bn_layer, nll_layer]
25
    return nn.Sequential(*layers)
26
27
28
def conv_blocks_2(in_channels, out_channels, strides=(1,1,1)):
29
    conv1 = conv(in_channels, out_channels, stride = strides)
30
    conv2 = conv(out_channels, out_channels, stride=(1,1,1))
31
    layers = [conv1, conv2]
32
    return nn.Sequential(*layers)
33
34
35
def conv_blocks_3(in_channels, out_channels, strides=(1,1,1)):
36
    conv1 = conv(in_channels, out_channels, stride = strides)
37
    conv2 = conv(out_channels, out_channels, stride=(1,1,1))
38
    conv3 = conv(out_channels, out_channels, stride=(1,1,1))
39
    layers = [conv1, conv2, conv3]
40
    return nn.Sequential(*layers)
41
42
def fullyconnect(in_features, out_features, out_channels, nonlinearity = relu):
43
    fc_layer = nn.Linear(in_features = in_features, out_features= out_features, bias = False)
44
45
    nll_layer = nonlinearity()
46
    bn_layer = nn.BatchNorm1d(out_channels)
47
48
    layers = [fc_layer, bn_layer, nll_layer]
49
    return nn.Sequential(*layers)
50
51
def conv_2D(in_channels, out_channels, kernel_size=3, stride=1, padding = 1, nonlinearity = relu):
52
    conv_layer = nn.Conv2d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, bias = False)
53
54
    nll_layer = nonlinearity()
55
    bn_layer = nn.BatchNorm2d(out_channels)
56
57
    layers = [conv_layer, bn_layer, nll_layer]
58
    return nn.Sequential(*layers)
59
60
def conv_1D(in_channels, out_channels, kernel_size=3, stride=1, padding = 1, nonlinearity = relu):
61
    conv_layer = nn.Conv1d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, bias = False)
62
63
    nll_layer = nonlinearity()
64
    bn_layer = nn.BatchNorm2d(out_channels)
65
66
    layers = [conv_layer, bn_layer, nll_layer]
67
    return nn.Sequential(*layers)
68
69
def deconv_2D(in_channels, out_channels, kernel_size=3, stride=1, padding = 1, nonlinearity = relu):
70
    conv_layer = nn.ConvTranspose2d(in_channels = in_channels, out_channels= out_channels, kernel_size = kernel_size, stride = stride, padding = padding, output_padding = 1, bias = False)
71
72
    nll_layer = nonlinearity()
73
    bn_layer = nn.BatchNorm2d(out_channels)
74
75
    layers = [conv_layer, bn_layer, nll_layer]
76
    return nn.Sequential(*layers)
77
78
79
def conv_blocks_2_2D(in_channels, out_channels, strides=1):
80
    conv1 = conv_2D(in_channels, out_channels, stride = strides)
81
    conv2 = conv_2D(out_channels, out_channels, stride=1)
82
    layers = [conv1, conv2]
83
    return nn.Sequential(*layers)
84
85
86
def conv_blocks_3_2D(in_channels, out_channels, strides=1):
87
    conv1 = conv_2D(in_channels, out_channels, stride = strides)
88
    conv2 = conv_2D(out_channels, out_channels, stride=1)
89
    conv3 = conv_2D(out_channels, out_channels, stride=1)
90
    layers = [conv1, conv2, conv3]
91
    return nn.Sequential(*layers)
92
93
# Flatten layer
94
class Flatten(nn.Module):
95
    def forward(self, input):
96
        return input.view(input.size(0), -1)
97
98
def generate_grid(x, offset):
99
    x_shape = x.size()
100
    grid_d, grid_w, grid_h = torch.meshgrid([torch.linspace(-1, 1, x_shape[2]), torch.linspace(-1, 1, x_shape[3]), torch.linspace(-1, 1, x_shape[4])])  # (h, w, h)
101
    grid_d = grid_d.cuda().float()
102
    grid_w = grid_w.cuda().float()
103
    grid_h = grid_h.cuda().float()
104
105
    grid_d = nn.Parameter(grid_d, requires_grad=False)
106
    grid_w = nn.Parameter(grid_w, requires_grad=False)
107
    grid_h = nn.Parameter(grid_h, requires_grad=False)
108
109
    offset_h, offset_w, offset_d = torch.split(offset, 1, 1)
110
    offset_d = offset_d.contiguous().view(-1, int(x_shape[2]), int(x_shape[3]), int(x_shape[4]))  # (b*c, d, w, h)
111
    offset_w = offset_w.contiguous().view(-1, int(x_shape[2]), int(x_shape[3]), int(x_shape[4]))  # (b*c, d, w, h)
112
    offset_h = offset_h.contiguous().view(-1, int(x_shape[2]), int(x_shape[3]), int(x_shape[4]))  # (b*c, d, w, h)
113
114
    offset_d = grid_d + offset_d
115
    offset_w = grid_w + offset_w
116
    offset_h = grid_h + offset_h
117
118
    offsets = torch.stack((offset_h, offset_w, offset_d), 4) # should have the same order as offset
119
    return offsets
120
121
def transform(seg_source, loc, mode='bilinear'):
122
    grid = generate_grid(seg_source, loc)
123
    # seg_source: NCDHW
124
    # grid: NDHW3
125
    out = F.grid_sample(seg_source, grid, mode=mode, align_corners=True)
126
    return out
127
128
129
130
class Mesh_2d(nn.Module):
131
    """Deformable registration network with input from image space """
132
    def __init__(self, n_ch=1):
133
        super(Mesh_2d, self).__init__()
134
135
        self.conv1 = conv_2D(n_ch, 32)
136
        self.conv2 = conv_2D(32, 64)
137
138
    def forward(self, x_2ch, x_2ched, x_4ch, x_4ched):
139
        # x: source image; x_pred: target image;
140
        net = {}
141
142
        net['conv1_2ch'] = self.conv1(x_2ch)
143
        net['conv1_4ch'] = self.conv1(x_4ch)
144
        net['conv1s_2ch'] = self.conv1(x_2ched)
145
        net['conv1s_4ch'] = self.conv1(x_4ched)
146
147
        net['conv2_2ch'] = self.conv2(net['conv1_2ch'])
148
        net['conv2_4ch'] = self.conv2(net['conv1_4ch'])
149
        net['conv2s_2ch'] = self.conv2(net['conv1s_2ch'])
150
        net['conv2s_4ch'] = self.conv2(net['conv1s_4ch'])
151
152
153
        return net
154
155
class deformnet(nn.Module):
156
    """Deformable registration network with input from image space """
157
    def __init__(self, n_ch=64, mesh_dim=22043):
158
        super(deformnet, self).__init__()
159
160
        self.conv_blocks_2D = [conv_blocks_2_2D(n_ch, 64), conv_blocks_2_2D(64, 128, 2), conv_blocks_3_2D(128, 256, 2),
161
                            conv_blocks_3_2D(256, 512, 2), conv_blocks_3_2D(512, 512, 2)]
162
163
        self.conv_blocks_2D = nn.Sequential(*self.conv_blocks_2D)
164
165
        self.conv2d9 = conv_2D(512 * 3, 512 * 2, kernel_size=3, stride=1)
166
        self.conv2d10 = deconv_2D(512 * 2, 512, kernel_size=3, stride=2)
167
        self.conv2d10_1 = conv_2D(512, 512, kernel_size=3, stride=1)
168
        self.conv2d11 = deconv_2D(512, 256, kernel_size=3, stride=2)
169
        self.conv2d11_1 = conv_2D(256, 256, kernel_size=3, stride=1)
170
        self.conv2d12 = deconv_2D(256, 128, kernel_size=3, stride=2)
171
        self.conv2d12_1 = conv_2D(128, 128, kernel_size=3, stride=1)
172
        self.conv2d13 = deconv_2D(128, 64, kernel_size=3, stride=2)
173
        self.conv2d13_1 = conv_2D(64, 64, kernel_size=3, stride=1)
174
175
        self.conv3d17 = conv(1, 3, 3, stride=(1, 1, 1))
176
        self.conv3d18 = nn.Conv3d(3, 3, 1, stride=(1, 1, 1))
177
178
179
    def forward(self, x_saed, x_2ched, x_4ched):
180
        # x: source image; x_pred: target image;
181
        net = {}
182
183
        net['conv0_sa_ed'] = x_saed
184
        net['conv0_2ch_ed'] = x_2ched
185
        net['conv0_4ch_ed'] = x_4ched
186
        # 5 refers to 5 output or 5 blocks
187
        for i in range(5):
188
            net['conv%d_sa_ed' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_sa_ed' % i])
189
            net['conv%d_2ch_ed' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_2ch_ed' % i])
190
            net['conv%d_4ch_ed' % (i + 1)] = self.conv_blocks_2D[i](net['conv%d_4ch_ed' % i])
191
192
193
        net['concat'] = torch.cat((net['conv5_sa_ed'], net['conv5_2ch_ed'], net['conv5_4ch_ed']), 1)
194
195
        net['conv2d_0_ed'] = self.conv2d9(net['concat'])
196
        net['conv2d_1_ed'] = self.conv2d10_1(self.conv2d10(net['conv2d_0_ed']))
197
        net['conv2d_2_ed'] = self.conv2d11_1(self.conv2d11(net['conv2d_1_ed']))
198
        net['conv2d_3_ed'] = self.conv2d12_1(self.conv2d12(net['conv2d_2_ed']))
199
        net['conv2d_4_ed'] = self.conv2d13_1(self.conv2d13(net['conv2d_3_ed']))
200
        net['conv3d_def_ed'] = net['conv2d_4_ed'].unsqueeze(1)
201
        net['out_def_ed'] = torch.tanh(self.conv3d18(self.conv3d17(net['conv3d_def_ed'])))
202
203
204
205
206
        return net