--- a +++ b/dataio_reconstruction.py @@ -0,0 +1,149 @@ +import torch.utils.data as data +import torch +from os import listdir +from os.path import join +import numpy as np +import nibabel as nib +import glob +import neural_renderer as nr + + + + +class TrainDataset(data.Dataset): + def __init__(self, data_path): + super(TrainDataset, self).__init__() + self.data_path = data_path + self.filename = [f for f in sorted(listdir(self.data_path))] + + def __getitem__(self, index): + input_sa, input_2ch, input_4ch, contour_sa_ed, contour_2ch_ed, contour_4ch_ed, \ + vertex_tpl_ed, faces_tpl, affine_inv, affine, origin, vertex_ed, \ + mesh2seg_sa, mesh2seg_2ch, mesh2seg_4ch = load_data(self.data_path, self.filename[index], T_num=50) + + img_sa_t = input_sa[0] + img_sa_ed = input_sa[1] + + img_2ch_t = input_2ch[0] + img_2ch_ed = input_2ch[1] + + img_4ch_t = input_4ch[0] + img_4ch_ed = input_4ch[1] + + return img_sa_t, img_sa_ed, img_2ch_t, img_2ch_ed, img_4ch_t, img_4ch_ed, contour_sa_ed, contour_2ch_ed, contour_4ch_ed, \ + vertex_tpl_ed, faces_tpl, affine_inv, affine, origin, vertex_ed, mesh2seg_sa, mesh2seg_2ch, mesh2seg_4ch + + def __len__(self): + return len(self.filename) + +class ValDataset(data.Dataset): + def __init__(self, data_path): + super(ValDataset, self).__init__() + self.data_path = data_path + self.filename = [f for f in sorted(listdir(self.data_path))] + + def __getitem__(self, index): + input_sa, input_2ch, input_4ch, \ + vertex_tpl_ed, faces_tpl, affine_inv, affine, origin, vertex_ed, contour_sa_ed, contour_2ch_ed, contour_4ch_ed, \ + mesh2seg_sa, mesh2seg_2ch, mesh2seg_4ch = load_data(self.data_path, self.filename[index], T_num=50, rand_frame=20) + + img_sa_t = input_sa[0] + img_sa_ed = input_sa[1] + + img_2ch_t = input_2ch[0] + img_2ch_ed = input_2ch[1] + + img_4ch_t = input_4ch[0] + img_4ch_ed = input_4ch[1] + + + return img_sa_t, img_sa_ed, img_2ch_t, img_2ch_ed, img_4ch_t, img_4ch_ed, contour_sa_ed, contour_2ch_ed, contour_4ch_ed, \ + vertex_tpl_ed, faces_tpl, affine_inv, affine, origin, vertex_ed, mesh2seg_sa, mesh2seg_2ch, mesh2seg_4ch + + def __len__(self): + return len(self.filename) + + +def get_data(path, fr): + nim = nib.load(path) + image = nim.get_data()[:, :, :, :] # (h, w, slices, frame) + image = np.array(image, dtype='float32') + + + image_fr = image[..., fr] + image_fr = image_fr[np.newaxis] + image_ed = image[..., 0] + image_ed = image_ed[np.newaxis] + + image_bank = np.concatenate((image_fr, image_ed), axis=0) + image_bank = np.transpose(image_bank, (0, 3, 1, 2)) + + + return image_bank + + +def load_data(data_path, filename, T_num, rand_frame=None): + # Load images and labels + img_sa_path = join(data_path, filename, 'sa_img.nii.gz') # (H, W, 1, frames) + img_2ch_path = join(data_path, filename, '2ch_img.nii.gz') + img_4ch_path = join(data_path, filename, '4ch_img.nii.gz') + + mesh2seg_SA_path = join(data_path, filename, 'proj_mesh_SA.npy') # (H, W, D) + mesh2seg_2CH_path = join(data_path, filename, 'proj_mesh_2CH.npy') # (H, W) + mesh2seg_4CH_path = join(data_path, filename, 'proj_mesh_4CH.npy') # (H, W) + + contour_sa_path = join(data_path, filename, 'contour_sa.npy') # (H, W, 9, frames) + contour_2ch_path = join(data_path, filename, 'contour_2ch.npy') # (H, W, 1, frames) + contour_4ch_path = join(data_path, filename, 'contour_4ch.npy') # (H, W, 1, frames) + + vertices_path = join(data_path, filename, 'vertices_init_myo_ED_smooth.npy') + faces_path = join(data_path, filename, 'faces_init_myo_ED_smooth.npy') + affine_path = join(data_path, filename, 'affine.npz') + origin_path = join(data_path, filename, 'origin.npz') + vertices_gt_path = join(data_path, filename, 'vertices_resampled_ED.npy') + + + # generate random index for t and z dimension + if rand_frame is not None: + rand_t = rand_frame + else: + rand_t = np.random.randint(0, T_num) + + image_sa_bank = get_data(img_sa_path, rand_t) + image_2ch_bank = get_data(img_2ch_path, rand_t) + image_4ch_bank = get_data(img_4ch_path, rand_t) + + contour_sa_ed = np.transpose(np.load(contour_sa_path)[:, :, :, 0], (2, 0, 1)) # [H,W,slices,frame] + contour_2ch_ed = np.load(contour_2ch_path)[:, :, 0, 0] # [H,W, 1, frame] + contour_4ch_ed = np.load(contour_4ch_path)[:, :, 0, 0] # [H,W, 1, frame] + + # load mesh + vertex_tpl_ed = np.load(vertices_path) + faces_tpl = np.load(faces_path) + vertex_ed = np.load(vertices_gt_path) + + # load affine + aff_sa_inv = np.load(affine_path)['sainv'] + aff_2ch_inv = np.load(affine_path)['la2chinv'] + aff_4ch_inv = np.load(affine_path)['la4chinv'] + affine_inv = np.stack((aff_sa_inv, aff_2ch_inv, aff_4ch_inv), 0) + aff_sa = np.load(affine_path)['sa'] + aff_2ch = np.load(affine_path)['la2ch'] + aff_4ch = np.load(affine_path)['la4ch'] + affine = np.stack((aff_sa, aff_2ch, aff_4ch), 0) + # load origin + origin_sa = np.load(origin_path)['sa'] + origin_2ch = np.load(origin_path)['la2ch'] + origin_4ch = np.load(origin_path)['la4ch'] + origin = np.stack((origin_sa, origin_2ch, origin_4ch), 0) + + + mesh2seg_sa = np.load(mesh2seg_SA_path) + mesh2seg_2ch = np.load(mesh2seg_2CH_path) + mesh2seg_4ch = np.load(mesh2seg_4CH_path) + + + return image_sa_bank, image_2ch_bank, image_4ch_bank, contour_sa_ed, contour_2ch_ed, contour_4ch_ed, \ + vertex_tpl_ed, faces_tpl, affine_inv, affine, origin, vertex_ed, mesh2seg_sa, mesh2seg_2ch, mesh2seg_4ch + +