"""
Developed by: Daniel Crovo
"""
import numpy as np
import csv
from hs_dataset import HSDataset
from torch.utils.data import DataLoader
import torch
import os
import torchvision
from torchmetrics.classification import BinaryJaccardIndex
import torchvision.transforms as transforms
import torchvision.utils as vutils
import torch
from PIL import Image
def get_loaders(train_dir, train_maskdir, val_dir, val_maskdir, batch_size, train_transform,
val_transform, num_workers, w_level, w_width, pin_memory = True, normalize=False):
"""_summary_
Args:
train_dir (_type_): _description_
train_maskdir (_type_): _description_
val_dir (_type_): _description_
val_maskdir (_type_): _description_
batch_size (_type_): _description_
train_transform (_type_): _description_
val_transform (_type_): _description_
num_workers (_type_): _description_
pin_memory (bool, optional): _description_. Defaults to True.
Returns:
_type_: _description_
"""
train_img_mask = HSDataset(image_dir = train_dir,
mask_dir = train_maskdir, transform = train_transform,
normalized=normalize, w_level=w_level, w_width=w_width)
train_loader = DataLoader(train_img_mask, batch_size = batch_size,
num_workers = num_workers, pin_memory = pin_memory, shuffle = True)
val_img_mask = HSDataset(image_dir = val_dir, mask_dir = val_maskdir,
transform = val_transform, normalized=normalize,
w_level=w_level, w_width=w_width,)
val_loader = DataLoader(val_img_mask, batch_size = batch_size,
num_workers = num_workers, pin_memory = pin_memory, shuffle = False)
return train_loader, val_loader
def load_checkpoint(checkpoint, model):
try:
model.load_state_dict(checkpoint['state_dict'])
print('\nCheckpoint importado exitosamente.')
except:
print('Error en la importación del Checkpoint.')
def save_checkpoint(state, filename = 'my_checkpoint.pth.tar'):
try:
torch.save(state, filename)
print('\nCheckpoint almacenado exitosamente.')
except:
print('Error en la importación del Checkpoint.')
def compute_jaccard_index(preds, targets):
intersection = torch.logical_and(preds, targets).sum()
union = torch.logical_or(preds, targets).sum()
jaccard = intersection.item() / (union.item()+ 1e-10)
return jaccard
def diceCoef(y_true, y_pred, smooth=1.):
y_true_f = y_true.flatten()
y_pred_f = y_pred.flatten()
intersection = np.sum(y_true_f * y_pred_f)
dice = (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
return round(float(dice), 3)
def perf(loader, model, device):
dice_score = 0.0
jaccard = 0.0
model.eval()
with torch.no_grad(): # deshabilitar el cálculo y almacenamiento de gradientes en el grafo computacional de PyTorch
for x, y in loader:
x = x.to(device = device)
y = y.to(device).unsqueeze(1)
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
if((preds.sum() == 0) and (y.sum() == 0)):
jaccard +=1
dice_score +=1
else:
jaccard += compute_jaccard_index(preds, y)
dice_score += (2*(preds*y).sum())/((preds + y).sum() + 1e-10)
dice_s = dice_score/len(loader)
jaccard_idx = jaccard/len(loader)
print('\nDice score: {}'.format(dice_s))
print('Jaccard index: {}\n'.format(jaccard_idx))
model.train()
return dice_s, jaccard_idx
def save_preds_as_imgs(loader, model, device, folder = '/home/danielcrovo/Documents/01.Study/01.MSc/02.MSc AI/Deep Learning/Proyecto/saved_images'):
model.eval()
for idx, (x, y) in enumerate(loader):
x = x.to(device = device)
with torch.no_grad(): # deshabilitar el cálculo y almacenamiento de gradientes en el grafo computacional de PyTorch
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
torchvision.utils.save_image(preds, f'{folder}/y_hat_{idx}.png') # almacenamiento de máscaras predichas
y = torch.unsqueeze(y, 1).to(torch.float32)
torchvision.utils.save_image(y, f'{folder}/y_{idx}.png') # almacenamiento de máscaras reales
torchvision.utils.save_image(x, f'{folder}/x_{idx}.png') # almacenamiento de máscaras reales
#masked_img= add_mask_to_rgb_image(x,preds)
#torchvision.utils.save_image(masked_img, f'{folder}/masked_{idx}.png') # almacenamiento de máscaras reales
model.train()
def add_mask_to_rgb_image(rgb_image_tensor, mask_tensor):
# Apply the mask to the RGB image tensor
masked_image_tensor = torch.where(mask_tensor > 0, torch.tensor([32,255, 0, 0]), rgb_image_tensor)
return masked_image_tensor #print(dice_score)
#train_loss = [tensor.cpu() for tensor in train_loss]
#train_dice = [tensor.cpu() for tensor in train_dice]
def save_metrics_to_csv(epoch, train_loss, train_dice, train_jaccard, dice_score, jaccard_score, filename):
metrics = {
'epoch': epoch,
'train_loss': train_loss,
'train_dice': train_dice,
'train_jaccard': train_jaccard,
'dice_score': dice_score,
'jaccard_score': jaccard_score
}
file_exists = os.path.isfile(filename)
with open(filename, mode='a', newline='') as file:
writer = csv.DictWriter(file, fieldnames=metrics.keys())
if not file_exists:
writer.writeheader()
writer.writerow(metrics)
def save_preds_as_imgs2(loader, model, device, folder='/home/danielcrovo/Documents/01.Study/01.MSc/02.MSc AI/Deep Learning/Proyecto/saved_images'):
model.eval()
for idx, (x, y) in enumerate(loader):
x = x.to(device=device)
with torch.no_grad():
preds = torch.sigmoid(model(x))
preds = (preds > 0.5).float()
# Convert single-channel mask to RGB format
y_rgb = y.repeat(1, 3, 1, 1)
# Merge predicted mask with input image
merged_img = x.clone()
merged_img[:, :3] = torch.where(preds > 0, torch.tensor([1.0, 0.0, 0.0]), merged_img[:, :3])
# Save the merged image
vutils.save_image(merged_img, f'{folder}/merged_{idx}.png')