"""
Stefania Fresca, MOX Laboratory, Politecnico di Milano
April 2019
"""
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import sys
sys.stdout = open('*.out', 'w')
import utils
from ROMNet import ROMNet
if __name__ == '__main__':
config = dict()
config['n'] = # reduced dimension
config['n_params'] = # number of parameters (time excluded)
config['lr'] = # starting learning rate
config['omega_h'] =
config['omega_n'] =
config['batch_size'] =
config['n_data'] = # N_{train} * N_t
config['N_h'] = # FOM dimension
config['n_h'] = # N_h = [n_h, n_h, 64]
config['N_t'] = # N_t
config['train_mat'] = '' # training snapshot matrix
config['test_mat'] = '' # testing snapshot matrix
config['train_params'] = '' # training parameter matrix
config['test_params'] = '' # testing parameter matrix
config['checkpoints_folder'] = ''
config['graph_folder'] = ''
config['large'] = # True if data are saved in .h5 format
config['zero_padding'] = # True if you must use zero padding
config['p'] = # size of zero padding
config['restart'] =
model = ROMNet(config)
model.build()
model.train_all(10000) # number of epochs