|
a |
|
b/MainROM.py |
|
|
1 |
""" |
|
|
2 |
|
|
|
3 |
Stefania Fresca, MOX Laboratory, Politecnico di Milano |
|
|
4 |
April 2019 |
|
|
5 |
|
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import os |
|
|
9 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' |
|
|
10 |
import sys |
|
|
11 |
sys.stdout = open('*.out', 'w') |
|
|
12 |
|
|
|
13 |
import utils |
|
|
14 |
from ROMNet import ROMNet |
|
|
15 |
|
|
|
16 |
if __name__ == '__main__': |
|
|
17 |
config = dict() |
|
|
18 |
config['n'] = 3 # n |
|
|
19 |
config['n_params'] = 3 # n_{\mu} + 1 |
|
|
20 |
config['lr'] = 0.0001 # starting learning rate |
|
|
21 |
config['omega_h'] = 0.5 |
|
|
22 |
config['omega_n'] = 0.5 |
|
|
23 |
config['batch_size'] = 40 |
|
|
24 |
config['n_data'] = 49000 # N_{train} * N_t |
|
|
25 |
config['N_h'] = 4096 # N |
|
|
26 |
config['n_h'] = 8 # N = [n_h, n_h, 64] |
|
|
27 |
config['N_t'] = 1000 # N_t |
|
|
28 |
config['train_mat'] = 'data/scar/S_train.mat' # training snapshot matrix |
|
|
29 |
config['test_mat'] = 'data/scar/S_test.mat' # testing snapshot matrix |
|
|
30 |
config['train_params'] = 'data/scar/params_train.mat' # training parameter matrix |
|
|
31 |
config['test_params'] = 'data/scar/params_test.mat' # testing parameter matrix |
|
|
32 |
config['checkpoints_folder'] = 'checkpoints' |
|
|
33 |
config['graph_folder'] = 'graphs' |
|
|
34 |
config['large'] = False # True if data are saved in .h5 format |
|
|
35 |
config['zero_padding'] = False # True if you must use zero padding |
|
|
36 |
config['p'] = 0 # size of zero padding |
|
|
37 |
config['restart'] = False # True if you want to restart training |
|
|
38 |
|
|
|
39 |
model = ROMNet(config) |
|
|
40 |
model.build() |
|
|
41 |
model.train_all(10000) # number of epochs |