--- a +++ b/MainROM.py @@ -0,0 +1,41 @@ +""" + +Stefania Fresca, MOX Laboratory, Politecnico di Milano +April 2019 + +""" + +import os +os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' +import sys +sys.stdout = open('*.out', 'w') + +import utils +from ROMNet import ROMNet + +if __name__ == '__main__': + config = dict() + config['n'] = 3 # n + config['n_params'] = 3 # n_{\mu} + 1 + config['lr'] = 0.0001 # starting learning rate + config['omega_h'] = 0.5 + config['omega_n'] = 0.5 + config['batch_size'] = 40 + config['n_data'] = 49000 # N_{train} * N_t + config['N_h'] = 4096 # N + config['n_h'] = 8 # N = [n_h, n_h, 64] + config['N_t'] = 1000 # N_t + config['train_mat'] = 'data/scar/S_train.mat' # training snapshot matrix + config['test_mat'] = 'data/scar/S_test.mat' # testing snapshot matrix + config['train_params'] = 'data/scar/params_train.mat' # training parameter matrix + config['test_params'] = 'data/scar/params_test.mat' # testing parameter matrix + config['checkpoints_folder'] = 'checkpoints' + config['graph_folder'] = 'graphs' + config['large'] = False # True if data are saved in .h5 format + config['zero_padding'] = False # True if you must use zero padding + config['p'] = 0 # size of zero padding + config['restart'] = False # True if you want to restart training + + model = ROMNet(config) + model.build() + model.train_all(10000) # number of epochs