Diff of /visualizer.py [000000] .. [4b8af8]

Switch to unified view

a b/visualizer.py
1
import numpy as np
2
import torch
3
4
import os
5
import io
6
import base64
7
8
import numpy as np
9
import pandas as pd
10
import cv2
11
import matplotlib.pyplot as plt
12
import matplotlib.colors as colors
13
14
import time
15
from IPython.display import clear_output
16
from IPython.display import HTML
17
18
19
def show_data_augmentations(img_tensor: torch.Tensor,
20
                            mask_tensor: torch.Tensor,
21
                            mean: tuple = (0.485, 0.456, 0.406),
22
                            std: tuple = (0.229, 0.224, 0.225),
23
                            labels: list=["image", "lung", "heart", "trachea"]):
24
    
25
    img = img_tensor.numpy().transpose(1, 2, 0)
26
    img = (img * std + mean).astype("float32")
27
    img = np.clip(img, 0, 1)
28
    mask = mask_tensor.numpy().transpose(1, 2, 0)
29
    data_to_plot = [img, *[mask[:,:, i] for i in range(3)]]
30
31
    fig, axes = plt.subplots(nrows=1, ncols=4, figsize=(15, 8))
32
    for i, ax in enumerate(axes):
33
        ax.imshow(data_to_plot[i])
34
        ax.set_title(labels[i])
35
36
    plt.show()
37
    
38
    
39
def show_video(video_path: str):
40
    """
41
    show video in jupyter notebook, agent interaction in environment.
42
    Takes - path to video file.
43
    Returns - html video player in jupyter notebook.
44
    """  
45
    video = io.open(video_path, 'r+b').read()
46
    encoded = base64.b64encode(video)
47
48
    return HTML(data='''<video alt="test" controls>
49
    <source src="data:video/mp4;base64,{0}" type="video/mp4" /> </video>'''
50
    .format(encoded.decode('ascii')))
51
  
52
  
53
def get_color_info(classes: list = ['lung', 'heart', 'trachea']):
54
55
    def get_color(cmap):
56
        new_cmap = colors.LinearSegmentedColormap.from_list(
57
            (cmap.name, 0.0, 0.0,),
58
            cmap(np.linspace(0.0, 0.0, 100))
59
            )
60
        return new_cmap
61
62
    colormaps = [plt.get_cmap(cmap_name) for cmap_name in 
63
                ['cool', 'autumn', 'autumn_r']
64
                ]
65
    arr = np.linspace(0, 50, 100).reshape((10, 10))
66
    fig, ax = plt.subplots(1, 3, figsize=(15, 5))
67
    for i in range(3):
68
        cmap = get_color(colormaps[i])
69
        ax[i].axis('off')
70
        ax[i].imshow(arr, cmap=cmap)
71
        ax[i].set_title(classes[i], fontsize=15)
72
73
    fig.suptitle("Color definition", fontsize=20, y=0.99)
74
    fig.savefig(f"color_definition.png", bbox_inches='tight', 
75
                pad_inches=0.2, dpi=100, format="png")
76
    
77
    plt.savefig(f"color_definition.svg", bbox_inches='tight',
78
                pad_inches=0.2, dpi=100, format="svg")
79
    plt.show()