--- a +++ b/dataset_description.md @@ -0,0 +1,52 @@ +### Dataset Description + +CT Chest Segmentation Dataset. +This dataset was be modified from `Lung segmentation dataset by Kónya et al., 2020 , https://www.kaggle.com/sandorkonya/ct-lung-heart-trachea-segmentation` + +The original nrrd files were re-saved in single tensor format with masks corresponding to labels: (**lungs**, **heart**, **trachea**) as numpy arrays using pickle. + +Each tensor has the following shape: number of slices, width, height, number of classes, where the width and height number of slices are individual parameters of each tensor id, and number of classes = 3. + +In addition, the data was re-saved as RGB images, where each image corresponds to one ID slice, and their mask-images have channels corresponding to three classes: (**lung**, **heart**, **trachea**). + +<p> + <img src="https://github.com/mandrakedrink/ChestCTSegmentation/blob/master/stats/data/demo.gif" width="35%" height="35%"> +</p> + + + +### Content +**The dataset contains**: + ++ numpy_images_files.zip - images in numpy format. ++ numpy_masks_files.zip - segmentation masks in numpy format. ++ images.zip - images in RGB format. ++ masks.zip - segmentation masks in RGB format. ++ train.csv - csv file with image names. + + +**Below is an example of what the data looks like:** + ++ **.npy files can be readed like this:** + +``` +import pickle + +with open(file_path, 'rb') as f: + tensor = pickle.load(f) +``` + ++ **The images look like this:** +<p> + <img src="https://github.com/mandrakedrink/ChestCTSegmentation/blob/master/stats/data/svg/data_example2.svg" width="60%" height="60%"> +</p> + +<p> + <img src="https://github.com/mandrakedrink/ChestCTSegmentation/blob/master/stats/data/svg/data_example1.svg" width="60%" height="60%"> +</p> + + +The code with dataset creation available here - [dataset_creation.ipynb](https://github.com/mandrakedrink/ChestCTSegmentation/blob/master/dataset_creation.ipynb)[<img src="https://colab.research.google.com/assets/colab-badge.svg" align="center">](https://colab.research.google.com/drive/166TOgOsRvcblQK2j_HTB8CmVy5VGabas?usp=sharing) + + +---