|
a |
|
b/dataset_dataloader.py |
|
|
1 |
import os |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import pandas as pd |
|
|
5 |
import cv2 |
|
|
6 |
|
|
|
7 |
from sklearn.model_selection import train_test_split |
|
|
8 |
|
|
|
9 |
import torch |
|
|
10 |
import torch.nn as nn |
|
|
11 |
from torch.utils.data import Dataset, DataLoader |
|
|
12 |
|
|
|
13 |
from albumentations.pytorch import ToTensor, ToTensorV2 |
|
|
14 |
from albumentations import (HorizontalFlip, |
|
|
15 |
VerticalFlip, |
|
|
16 |
Normalize, |
|
|
17 |
Compose) |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
class LungsDataset(Dataset): |
|
|
21 |
def __init__(self, |
|
|
22 |
imgs_dir: str, |
|
|
23 |
masks_dir:str, |
|
|
24 |
df: pd.DataFrame, |
|
|
25 |
phase: str): |
|
|
26 |
"""Initialization.""" |
|
|
27 |
self.root_imgs_dir = imgs_dir |
|
|
28 |
self.root_masks_dir = masks_dir |
|
|
29 |
self.df = df |
|
|
30 |
self.augmentations = get_augmentations(phase) |
|
|
31 |
|
|
|
32 |
def __len__(self): |
|
|
33 |
return len(self.df) |
|
|
34 |
|
|
|
35 |
def __getitem__(self, idx): |
|
|
36 |
img_name = self.df.loc[idx, "ImageId"] |
|
|
37 |
mask_name = self.df.loc[idx, "MaskId"] |
|
|
38 |
img_path = os.path.join(self.root_imgs_dir, img_name) |
|
|
39 |
mask_path = os.path.join(self.root_masks_dir, mask_name) |
|
|
40 |
img = cv2.imread(img_path) |
|
|
41 |
mask = cv2.imread(mask_path) |
|
|
42 |
mask[mask < 240] = 0 # remove artifacts |
|
|
43 |
mask[mask > 0] = 1 |
|
|
44 |
|
|
|
45 |
augmented = self.augmentations(image=img, |
|
|
46 |
mask=mask.astype(np.float32)) |
|
|
47 |
img = augmented['image'] |
|
|
48 |
mask = augmented['mask'].permute(2, 0, 1) |
|
|
49 |
|
|
|
50 |
return img, mask |
|
|
51 |
|
|
|
52 |
|
|
|
53 |
def get_augmentations(phase, |
|
|
54 |
mean: tuple = (0.485, 0.456, 0.406), |
|
|
55 |
std: tuple = (0.229, 0.224, 0.225),): |
|
|
56 |
list_transforms = [] |
|
|
57 |
if phase == "train": |
|
|
58 |
list_transforms.extend( |
|
|
59 |
[ |
|
|
60 |
VerticalFlip(p=0.5), |
|
|
61 |
] |
|
|
62 |
) |
|
|
63 |
list_transforms.extend( |
|
|
64 |
[ |
|
|
65 |
Normalize(mean=mean, std=std, p=1), |
|
|
66 |
#ToTensor(num_classes=3, sigmoid=False), |
|
|
67 |
ToTensorV2(), |
|
|
68 |
] |
|
|
69 |
) |
|
|
70 |
list_trfms = Compose(list_transforms) |
|
|
71 |
return list_trfms |
|
|
72 |
|
|
|
73 |
|
|
|
74 |
def get_dataloader( |
|
|
75 |
imgs_dir: str, |
|
|
76 |
masks_dir: str, |
|
|
77 |
path_to_csv: str, |
|
|
78 |
phase: str, |
|
|
79 |
batch_size: int = 8, |
|
|
80 |
num_workers: int = 6, |
|
|
81 |
test_size: float = 0.2, |
|
|
82 |
): |
|
|
83 |
'''Returns: dataloader for the model training''' |
|
|
84 |
df = pd.read_csv(path_to_csv) |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
train_df, val_df = train_test_split(df, |
|
|
88 |
test_size=test_size, |
|
|
89 |
random_state=69) |
|
|
90 |
train_df, val_df = train_df.reset_index(drop=True), val_df.reset_index(drop=True) |
|
|
91 |
|
|
|
92 |
df = train_df if phase == "train" else val_df |
|
|
93 |
image_dataset = LungsDataset(imgs_dir, masks_dir, df, phase) |
|
|
94 |
dataloader = DataLoader( |
|
|
95 |
image_dataset, |
|
|
96 |
batch_size=batch_size, |
|
|
97 |
num_workers=num_workers, |
|
|
98 |
pin_memory=True, |
|
|
99 |
shuffle=True, |
|
|
100 |
) |
|
|
101 |
|
|
|
102 |
return dataloader |