[e50482]: / predict_3d.py

Download this file

220 lines (194 with data), 8.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import matplotlib.pyplot as plt
from data_3d import *
from train_3d import *
torch.manual_seed(42)
import monai.transforms as mt
"""-----------------------Arguments-----------------------"""
parser = argparse.ArgumentParser(description="Prediction")
parser.add_argument("--batch_size_test", type=str, default=1)
args = parser.parse_args()
test_batch_size = args.batch_size_test
# Softmax
soft = torch.nn.Softmax(dim=1).cuda()
# IoU
IOU_metric = IoU(num_classes=4, absent_score=-1., reduction="none").cuda()
# F1 score
f1_metric = F1(num_classes=4, mdmc_average="samplewise", average='none').cuda()
"""---------Post Processing---------"""
keep_largest = monai.transforms.KeepLargestConnectedComponent(applied_labels=[0, 1, 2, 3], independent=True)
fill_holes = monai.transforms.FillHoles()
"""---------Test Data---------"""
test_transform = mt.Compose([
mt.ToTensorD(keys=["image", "mask"], allow_missing_keys=False)
])
# Test dataset
test_data = DataLoader(test_loader_ACDC3(transform=test_transform, test_index=None), batch_size=1, shuffle=False)
# padding: just pass the image
def Pad_images(image):
orig_shape = list(image.size())
original_x = orig_shape[2]
original_y = orig_shape[3]
original_z = orig_shape[4]
new_x = (16 - (original_x % 16)) + original_x
new_y = (16 - (original_y % 16)) + original_y
new_z = original_z
new_shape = [new_x, new_y, new_z]
b, c, h, w, d = image.shape
m = image.min()
x_max = new_shape[0]
y_max = new_shape[1]
z_max = new_shape[2]
result = torch.Tensor(b, c, x_max, y_max, z_max).fill_(m)
xx = (x_max - h) // 2
yy = (y_max - w) // 2
zz = (z_max - d) // 2
result[:, :, xx:xx + h, yy:yy + w, zz:zz + d] = image
return result, tuple([xx, yy, zz]) # result is a torch tensor in CPU --> have to move to GPU
# pass the padded image, the indices and the original shape
def UnPad_imges(image, indices, org_shape):
b, c, h, w, d = org_shape
xx = indices[0]
yy = indices[1]
zz = indices[2]
return image[:, :, xx:xx + h, yy:yy + w, zz:zz + d] # image is a torch tensor --> have to move to GPU
# def show_results(res):
# for slices in range(res.shape[2]):
# out_show_res = res[:, :, slices]
# plt.imshow(out_show_res)
# plt.show()
# save the predictions and ground truths
def save_pred(img, mask, pred, outpath, name_model, idx, aff):
# Folder to save the results
if not os.path.exists(os.path.join(outpath, name_model)):
os.makedirs(os.path.join(outpath, name_model))
out_save_path_image = os.path.join(outpath, name_model, f"{idx}_image" + '.nii.gz')
out_save_path_pred = os.path.join(outpath, name_model, f"{idx}_pred" + '.nii.gz')
out_save_path_mask = os.path.join(outpath, name_model, f"{idx}_gt" + '.nii.gz')
# affine = np.diag([-1.25, -1.25, 10.0, 1.0])
# print(aff.shape, aff)
aff = aff.squeeze().cpu()
affine = np.diag([torch.diagonal(aff)[0], torch.diagonal(aff)[1],
torch.diagonal(aff)[2], torch.diagonal(aff)[3]])
print(affine)
# Save images
img = img.squeeze()
img = np.array(img.cpu())
# show_results(img)
# print(type(img))
for slices in range(img.shape[2]):
out_show_img = img[:, :, slices]
if not os.path.exists(os.path.join(outpath, name_model)):
os.makedirs(os.path.join(outpath, name_model))
out_save_path_image = os.path.join(outpath, name_model, f"{idx}_{slices}_image" + '.png')
image_file_name = f"{idx}_{slices}_image"
plt.title = image_file_name
plt.imsave(out_save_path_image, out_show_img, format='png', cmap='gray')
plt.close()
# saves the resampled images
img = nib.Nifti1Image(img, affine)
nib.save(img, out_save_path_image)
# Save ground truths
mask = mask.squeeze()
mask = np.array(mask.cpu())
# print(type(mask))
for slices in range(mask.shape[2]):
out_show_mask = mask[:, :, slices]
if not os.path.exists(os.path.join(outpath, name_model)):
os.makedirs(os.path.join(outpath, name_model))
out_save_path_mask = os.path.join(outpath, name_model, f"{idx}_{slices}_gt" + '.png')
image_file_name = f"{idx}_{slices}_gt"
plt.title = image_file_name
plt.imsave(out_save_path_mask, out_show_mask, format='png', cmap='gray')
plt.close()
# saves the resampled masks
mask = nib.Nifti1Image(mask, affine)
nib.save(mask, out_save_path_mask)
# Save predictions
# Post Processing
final_prediction = torch.argmax(pred, dim=1)
final_prediction = keep_largest(final_prediction)
# final_prediction = fill_holes(final_prediction)
# final_prediction = torch.argmax(final_prediction, dim=1)
final_pred = np.array(final_prediction.cpu().squeeze())
# print(type(final_pred))
for slices in range(final_pred.shape[2]):
out_show_pred = final_pred[:, :, slices]
if not os.path.exists(os.path.join(outpath, name_model)):
os.makedirs(os.path.join(outpath, name_model))
out_save_path_pred = os.path.join(outpath, name_model, f"{idx}_{slices}_pred" + '.png')
image_file_name = f"{idx}_{slices}_pred"
plt.title = image_file_name
plt.imsave(out_save_path_pred, out_show_pred, format='png', cmap='gray')
plt.close()
# saves the resampled predictions
final_pred = nib.Nifti1Image(final_pred, affine)
nib.save(final_pred, out_save_path_pred)
def save_results(iou, dice, out_path, model_name):
# Folder to store the plots
if not os.path.exists(os.path.join(out_path, model_name)):
os.makedirs(os.path.join(out_path, model_name))
out_save_path = os.path.join(os.path.join(out_path, model_name))
# IoU
sorted_iou = sorted(iou)
print("Top IoU:", sorted_iou[-1])
# Dice Scores
sorted_dice = sorted(dice)
print("Top Dice Score:", sorted_dice[-1])
# save results
result_dict = {"IoU": sorted_iou[-1],
"Dice Score": sorted_dice[-1]}
file_name = 'results.txt'
completeName = os.path.join(out_save_path, file_name)
with open(completeName, 'w') as file:
file.write(str(result_dict))
def test_results(model, out_path, model_name):
all_iou = []
all_dice = []
indices = 0
for items in test_data:
image = items["image"].cuda()
image_shape = image.shape
mask = items["mask"].long().cuda().squeeze(dim=1)
# print(mask.shape, image_shape)
# pad the image
image, ind = Pad_images(image)
pred = model(image.float().cuda())
# unpad the images
pred = UnPad_imges(pred, ind, image_shape).cuda()
pred = soft(pred)
# pred = torch.argmax(pred, dim=1)
###############################################
img_affine = items['image_meta_dict']['affine']
mask_affine = items['mask_meta_dict']['affine']
image_affine_original = items['image_meta_dict']['original_affine']
mask_affine_original = items['mask_meta_dict']['original_affine']
# print(img_affine, image_affine_original)
###############################################
# Save results
save_pred(image, mask, pred, out_path, model_name, indices, image_affine_original)
# calculate iou
iou_all_class = IOU_metric(pred, mask)
iou_all_class = iou_all_class.cpu().numpy()
iou_all_class = iou_all_class[iou_all_class != -1.]
iou = iou_all_class.mean()
all_iou.append(iou)
# calculate dice score
dice_all_class = f1_metric(pred, mask)
dice_all_class = dice_all_class.cpu().numpy()
# dice_all_class = dice_all_class[~np.isnan(dice_all_class)]
dice_all_class = dice_all_class[dice_all_class != -1.]
dice = dice_all_class.mean()
all_dice.append(dice)
indices = indices + 1
# Save plots
save_results(all_iou, all_dice, out_path, model_name)
if __name__ == "__main__":
name = str("UNet3D_Best_0.5_Fold_4")
model_path = str(Path(r"../unet/cluster_results/best_models", name + ".pt"))
if not os.path.exists(r'../unet/test_results_3d/'):
os.makedirs(r'../unet/test_results_3d/')
result_path = r'../unet/test_results_3d/'
model = torch.load(model_path)
with torch.no_grad():
model.eval().cuda()
test_results(model, result_path, name)