[e50482]: / data_2d.py

Download this file

210 lines (180 with data), 8.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import random
import monai.transforms as mt
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
from sklearn.model_selection import KFold
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
def normalize(data):
data = (data - data.mean()) / data.std()
return data
class ACDC_2D(Dataset):
def __init__(self, source, ind, Transform=None):
# basic transforms
self.loader = mt.LoadImaged(keys=["image", "mask"])
self.add_channel = mt.AddChanneld(keys=["image", "mask"])
self.spatial_pad = mt.SpatialPadD(keys=["image", "mask"], spatial_size=tar_shape, mode="edge")
self.spacing = mt.Spacingd(keys=["image", "mask"], pixdim=(1.25, 1.25, -1.0), mode=("nearest", "nearest"))
# index
self.ind = ind
# transform
if Transform is not None:
self.transform = Transform
else:
self.transform = mt.Compose([
mt.SpatialPadD(keys=["image", "mask"], spatial_size=tar_shape, mode="edge"),
mt.ToTensorD(keys=["image", "mask"], allow_missing_keys=False)
])
# take the images
source = Path(source)
dirs = os.listdir(str(source)) # stores patient name
all_data_ed = []
all_data_ed_mask = []
all_data_es = []
all_data_es_mask = []
for filenames in dirs:
patient_path = Path(str(source), filenames) # individual patient path
patient_info = str(patient_path) + "/Info.cfg" # patient information
file = open(patient_info, 'r').readlines()
ED_frame = int(file[0].split(":")[1])
ES_frame = int(file[1].split(":")[1])
ED = Path(str(patient_path), filenames + "_frame{:02d}.nii.gz".format(ED_frame))
ES = Path(str(patient_path), filenames + "_frame{:02d}.nii.gz".format(ES_frame))
ED_gt = Path(str(patient_path), filenames + "_frame{:02d}_gt.nii.gz".format(ED_frame))
ES_gt = Path(str(patient_path), filenames + "_frame{:02d}_gt.nii.gz".format(ES_frame))
all_data_ed.append(ED)
all_data_ed_mask.append(ED_gt)
all_data_es.append(ES)
all_data_es_mask.append(ES_gt)
if self.ind is not None:
all_data_ed = [all_data_ed[i] for i in self.ind]
all_data_ed_mask = [all_data_ed_mask[i] for i in self.ind]
all_data_es = [all_data_es[i] for i in self.ind]
all_data_es_mask = [all_data_es_mask[i] for i in self.ind]
self.data = [all_data_ed, all_data_ed_mask, all_data_es, all_data_es_mask]
def __len__(self):
return len(self.data[0])
def __getitem__(self, idx):
ED_img, ED_mask, ES_img, ES_mask = self.data[0][idx], self.data[1][idx], self.data[2][idx], self.data[3][idx]
# data dict
ED_data_dict = {"image": ED_img,
"mask": ED_mask}
ES_data_dict = {"image": ES_img,
"mask": ES_mask}
# instead of returning both ED and ES, I have to return just a random choice between ED and ES(image and mask)
datalist = [ED_data_dict, ES_data_dict]
data_return = np.random.choice(datalist)
data_return = self.loader(data_return)
data_return = self.add_channel(data_return)
data_return = self.spacing(data_return)
data_return["image"] = normalize(data_return["image"])
num_slice = data_return["image"].shape[3]
random_slice = random.randint(0, num_slice - 1)
data_return["image"] = data_return["image"][:, :, :, random_slice]
data_return["image"] = normalize(data_return["image"])
data_return["mask"] = data_return["mask"][:, :, :, random_slice]
data_return = self.transform(data_return)
return data_return
# target/crop shape for the images and masks when training
tar_shape = [352, 352]
crop_shape = [224, 224]
def train_loader_ACDC(train_index, data_path=r"D:\Master_Thesis\Lightning\training", transform=None):
train_loader = ACDC_2D(source=data_path, Transform=transform, ind=train_index)
return train_loader
def val_loader_ACDC(val_index, data_path=r"D:\Master_Thesis\Lightning\training", transform=None):
val_loader = ACDC_2D(source=data_path, Transform=transform, ind=val_index)
return val_loader
def test_loader_ACDC(test_index, data_path=r"D:\Master_Thesis\Lightning\testing", transform=None):
test_loader = ACDC_2D(source=data_path, Transform=transform, ind=test_index)
return test_loader
""" To test if the dataloader works """
train_compose = mt.Compose(
[mt.SpatialPadD(keys=["image", "mask"], spatial_size=tar_shape, mode="edge"),
mt.RandSpatialCropD(keys=["image", "mask"], roi_size=crop_shape, random_center=True, random_size=False),
# mt.RandZoomd(
# keys=["image", "mask"],
# min_zoom=0.9,
# max_zoom=1.2,
# mode=("bilinear", "nearest"),
# align_corners=(True, None),
# prob=1,
# ),
# mt.Rand2DElasticD(
# keys=["image", "mask"],
# prob=1,
# spacing=(50, 50),
# magnitude_range=(1, 3),
# rotate_range=(np.pi / 4,),
# scale_range=(0.1, 0.1),
# translate_range=(10, 10),
# padding_mode="border",
# ),
# mt.RandScaleIntensityd(keys=["image"], factors=0.3, prob=1),
# mt.RandFlipd(["image", "mask"], spatial_axis=[0], prob=1),
# mt.RandFlipd(["image", "mask"], spatial_axis=[1], prob=1),
# mt.RandRotateD(keys=["image", "mask"], range_x=np.pi / 4, range_y=np.pi / 4, range_z=0.0, prob=1,
# keep_size=True, mode=("nearest", "nearest"), align_corners=False),
# mt.RandRotate90D(keys=["image", "mask"], prob=1, spatial_axes=(0, 1)),
# mt.RandGaussianNoiseD(keys=["image"], prob=1, std=0.01),
mt.ToTensorD(keys=["image", "mask"], allow_missing_keys=False),
# mt.RandKSpaceSpikeNoiseD(keys=["image"], prob=1, intensity_range=(5.0, 7.5)),
]
)
val_compose = mt.Compose(
[
mt.ToTensorD(keys=["image", "mask"], allow_missing_keys=False),
]
)
test_compose = mt.Compose(
[
mt.DivisiblePadD(keys=["image", "mask"], k=(16, 16), mode="edge"),
mt.ToTensorD(keys=["image", "mask"], allow_missing_keys=False),
]
)
splits = KFold(n_splits=5, shuffle=True, random_state=4)
concatenated_dataset = train_loader_ACDC(transform=None, train_index=None)
for fold, (train_idx, val_idx) in enumerate(splits.split(np.arange(len(concatenated_dataset)))):
print("--------------------------", "Fold", fold + 1, "--------------------------")
# training dataset
training_data = DataLoader(train_loader_ACDC(transform=train_compose, train_index=train_idx), batch_size=5,
shuffle=True)
print("train from here")
for dic in training_data:
images = dic["image"]
masks = dic["mask"]
# print(images.shape, masks.shape)
# image, label = dic["image"], dic["mask"]
# plt.figure("visualise", (8, 4))
# plt.subplot(1, 2, 1)
# plt.title("image")
# plt.imshow(image[0, 0, :, :], cmap="gray")
# plt.subplot(1, 2, 2)
# plt.title("mask")
# plt.imshow(label[0, 0, :, :], cmap="gray")
# plt.show()
# validation dataset
validation_data = DataLoader(val_loader_ACDC(transform=val_compose, val_index=val_idx), batch_size=1,
shuffle=False)
print("val from here")
for dic in validation_data:
images = dic["image"]
masks = dic["mask"]
# print(images.shape, masks.shape)
# image, label = dic["image"], dic["mask"]
# plt.figure("visualise", (8, 4))
# plt.subplot(1, 2, 1)
# plt.title("image")
# plt.imshow(image[0, 0, :, :], cmap="gray")
# plt.subplot(1, 2, 2)
# plt.title("mask")
# plt.imshow(label[0, 0, :, :], cmap="gray")
# plt.show()
# test dataset
test_data = DataLoader(test_loader_ACDC(transform=test_compose, test_index=None), batch_size=1, shuffle=False)
print("test from here")
for dic in test_data:
images = dic["image"]
masks = dic["mask"]
print(images.shape, masks.shape)