--- a +++ b/attn_unet_2d.py @@ -0,0 +1,174 @@ +import copy +import torch +import torch.nn as nn +import pytorch_lightning as pl + + +class conv_block(pl.LightningModule): + def __init__(self, ch_in, ch_out): + super(conv_block, self).__init__() + self.conv = nn.Sequential( + nn.Conv2d(ch_in, ch_out, kernel_size=(3, 3), stride=(1, 1), padding=1), + nn.BatchNorm2d(ch_out), + nn.LeakyReLU(inplace=True), + nn.Conv2d(ch_out, ch_out, kernel_size=(3, 3), stride=(1, 1), padding=1), + nn.BatchNorm2d(ch_out), + nn.LeakyReLU(inplace=True) + ) + + def forward(self, x): + x = self.conv(x) + return x + + +class up_conv(pl.LightningModule): + def __init__(self, ch_in, ch_out): + super(up_conv, self).__init__() + self.up = nn.Sequential( + nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True), + nn.Conv2d(ch_in, ch_out, kernel_size=(3, 3), stride=(1, 1), padding=1), + nn.BatchNorm2d(ch_out), + nn.LeakyReLU(inplace=True) + ) + + def forward(self, x): + x = self.up(x) + return x + + +class Attention_block(pl.LightningModule): + def __init__(self, F_g, F_l, F_int): + super(Attention_block, self).__init__() + self.W_g = nn.Sequential( + nn.Conv2d(F_g, F_int, kernel_size=(1, 1), stride=(1, 1), padding=0), + nn.BatchNorm2d(F_int) + ) + self.W_x = nn.Sequential( + nn.Conv2d(F_l, F_int, kernel_size=(1, 1), stride=(1, 1), padding=0), + nn.BatchNorm2d(F_int) + ) + self.psi = nn.Sequential( + nn.Conv2d(F_int, 1, kernel_size=(1, 1), stride=(1, 1), padding=0), + nn.BatchNorm2d(1), + nn.Sigmoid() + ) + self.relu = nn.ReLU(inplace=True) + + def forward(self, g, x): + g1 = self.W_g(g) + x1 = self.W_x(x) + psi = self.relu(g1 + x1) + psi = self.psi(psi) + return x * psi + + +class AttU_Net2D(pl.LightningModule): + def __init__(self, drop): + super(AttU_Net2D, self).__init__() + + self.Maxpool = nn.MaxPool2d(kernel_size=2, stride=2) + self.drop = nn.Dropout2d(p=drop) + self.upsample2d = nn.Upsample(scale_factor=(2, 2), mode='bilinear', align_corners=True) + + self.Conv1 = conv_block(ch_in=1, ch_out=48) + self.Conv2 = conv_block(ch_in=48, ch_out=96) + self.Conv3 = conv_block(ch_in=96, ch_out=192) + self.Conv4 = conv_block(ch_in=192, ch_out=384) + self.Conv5 = conv_block(ch_in=384, ch_out=768) + + self.Up5 = up_conv(ch_in=768, ch_out=384) + self.Att5 = Attention_block(F_g=384, F_l=384, F_int=192) + self.Up_conv5 = conv_block(ch_in=768, ch_out=384) + + self.Up4 = up_conv(ch_in=384, ch_out=192) + self.Att4 = Attention_block(F_g=192, F_l=192, F_int=96) + self.Up_conv4 = conv_block(ch_in=384, ch_out=192) + + self.Up3 = up_conv(ch_in=192, ch_out=96) + self.Att3 = Attention_block(F_g=96, F_l=96, F_int=48) + self.Up_conv3 = conv_block(ch_in=192, ch_out=96) + + self.Up2 = up_conv(ch_in=96, ch_out=48) + self.Att2 = Attention_block(F_g=48, F_l=48, F_int=24) + self.Up_conv2 = conv_block(ch_in=96, ch_out=48) + + self.Conv_1x1 = nn.Conv2d(48, 4, kernel_size=(1, 1)) + + # deep supervision 2nd decoder block + self.deep1 = nn.Conv2d(192, 4, kernel_size=(1, 1), padding='same') + # deep supervision 3rd decoder block + self.deep2 = nn.Conv2d(96, 4, kernel_size=(1, 1), padding='same') + + self.neg_slope = 1e-2 + self.apply(self.InitWeights_He) + + def InitWeights_He(self, module): + if isinstance(module, nn.Conv3d) or isinstance(module, nn.Conv2d) or \ + isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.ConvTranspose3d): + module.weight = nn.init.kaiming_normal_(module.weight, a=self.neg_slope) + if module.bias is not None: + module.bias = nn.init.constant_(module.bias, 0) + + def forward(self, x): + # encoding path + x1 = self.Conv1(x) + + x2 = self.Maxpool(x1) + x2 = self.Conv2(x2) + x2 = self.drop(x2) # dropout + + x3 = self.Maxpool(x2) + x3 = self.Conv3(x3) + x3 = self.drop(x3) # dropout + + x4 = self.Maxpool(x3) + x4 = self.Conv4(x4) + x4 = self.drop(x4) # dropout + + x5 = self.Maxpool(x4) + x5 = self.Conv5(x5) + + # decoding + concat path + d5 = self.Up5(x5) + x4 = self.Att5(g=d5, x=x4) + d5 = torch.cat((x4, d5), dim=1) + d5 = self.drop(d5) + d5 = self.Up_conv5(d5) + + d4 = self.Up4(d5) + x3 = self.Att4(g=d4, x=x3) + d4 = torch.cat((x3, d4), dim=1) + d4 = self.drop(d4) + d4 = self.Up_conv4(d4) + ds2 = copy.copy(d4) + + d3 = self.Up3(d4) + x2 = self.Att3(g=d3, x=x2) + d3 = torch.cat((x2, d3), dim=1) + d3 = self.drop(d3) + d3 = self.Up_conv3(d3) + ds3_2 = copy.copy(d3) + + d2 = self.Up2(d3) + x1 = self.Att2(g=d2, x=x1) + d2 = torch.cat((x1, d2), dim=1) + d2 = self.Up_conv2(d2) + + d1 = self.Conv_1x1(d2) + + # Deep supervision + ds2_1x1_conv = self.deep1(ds2) + ds1_ds2_sum_upscale = self.upsample2d(ds2_1x1_conv) + ds3_1x1_conv = self.deep2(ds3_2) + ds1_ds2_sum_upscale_ds3_sum = torch.add(ds1_ds2_sum_upscale, ds3_1x1_conv) + ds1_ds2_sum_upscale_ds3_sum_upscale = self.upsample2d(ds1_ds2_sum_upscale_ds3_sum) + out = torch.add(d1, ds1_ds2_sum_upscale_ds3_sum_upscale) + + return out + + +# if __name__ == "__main__": +# model = AttU_Net2D(0.0).cuda() +# inp = torch.rand(6, 1, 240, 240).cuda() +# output = model(inp) +# print("output", output.shape, "Number of parameters", sum(p.numel() for p in model.parameters()))