[dc0d36]: / utils / eval_utils.py

Download this file

320 lines (264 with data), 11.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.model_mil import MIL_fc, MIL_fc_mc
from models.model_clam import CLAM, CLAM_Simple
from models.model_attention_mil import MIL_Attention_fc
from models.model_histogram import MIL_fc_Histogram
import pdb
import os
import pandas as pd
from utils.utils import *
from utils.core_utils import EarlyStopping, Accuracy_Logger
from utils.file_utils import save_pkl, load_pkl
from sklearn.metrics import roc_auc_score, roc_curve, auc
import h5py
from models.resnet_custom import resnet50_baseline
import math
from sklearn.preprocessing import label_binarize
def initiate_model(args, ckpt_path=None):
print('Init Model')
model_dict = {"dropout": args.drop_out, 'n_classes': args.n_classes}
if args.model_size is not None and args.model_type in ['clam', 'attention_mil', 'clam_simple']:
model_dict.update({"size_arg": args.model_size})
if args.model_type =='clam':
model = CLAM(**model_dict)
elif args.model_type =='clam_simple':
model = CLAM_Simple(**model_dict)
elif args.model_type == 'attention_mil':
model = MIL_Attention_fc(**model_dict)
elif args.model_type == 'histogram_mil':
model = MIL_fc_Histogram(**model_dict)
else: # args.model_type == 'mil'
if args.n_classes > 2:
model = MIL_fc_mc(**model_dict)
else:
model = MIL_fc(**model_dict)
#model.relocate()
print_network(model)
if ckpt_path is not None:
ckpt = torch.load(ckpt_path)
ckpt_clean = {}
for key in ckpt.keys():
if 'instance_loss_fn' in key:
continue
ckpt_clean.update({key.replace('.module', ''):ckpt[key]})
model.load_state_dict(ckpt_clean, strict=True)
model.relocate()
model.eval()
return model
#%------------
# if ckpt_path is not None:
# ckpt = torch.load(ckpt_path)
# ckpt_clean = {}
# for key in ckpt.keys():
# if 'instance_loss_fn' in key:
# continue
# ckpt_clean.update({key.replace('.module', ''):ckpt[key]})
# model.load_state_dict(ckpt_clean, strict=True)
# model.relocate()
# model.eval()
# return model
#
#%----------
def eval(dataset, args, ckpt_path):
model = initiate_model(args, ckpt_path)
print('Init Loaders')
loader = get_simple_loader(dataset)
patient_results, test_error, auc, aucs, df, _ = summary(model, loader, args)
print('test_error: ', test_error)
print('auc: ', auc)
for cls_idx in range(len(aucs)):
print('class {} auc: {}'.format(cls_idx, aucs[cls_idx]))
return model, patient_results, test_error, auc, aucs, df
def infer(dataset, args, ckpt_path, class_labels):
model = initiate_model(args, ckpt_path)
df = infer_dataset(model, dataset, args, class_labels)
return model, df
# Code taken from pytorch/examples for evaluating topk classification on on ImageNet
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(1.0 / batch_size))
return res
def summary(model, loader, args):
acc_logger = Accuracy_Logger(n_classes=args.n_classes)
model.eval()
test_loss = 0.
test_error = 0.
all_probs = np.zeros((len(loader), args.n_classes))
all_labels = np.zeros(len(loader))
all_preds = np.zeros(len(loader))
if not args.patient_level:
slide_ids = loader.dataset.slide_data['slide_id']
patient_results = {}
for batch_idx, (data, label) in enumerate(loader):
data, label = data.to(device), label.to(device)
slide_id = slide_ids.iloc[batch_idx]
with torch.no_grad():
logits, Y_prob, Y_hat, _, results_dict = model(data)
acc_logger.log(Y_hat, label)
probs = Y_prob.cpu().numpy()
all_probs[batch_idx] = probs
all_labels[batch_idx] = label.item()
all_preds[batch_idx] = Y_hat.item()
patient_results.update({slide_id: {'slide_id': np.array(slide_id), 'prob': probs, 'label': label.item()}})
error = calculate_error(Y_hat, label)
test_error += error
else:
case_ids = loader.dataset.slide_data['case_id']
patient_results = {}
for batch_idx, (data, label) in enumerate(loader):
data, label = data.to(device), label.to(device)
case_id = case_ids.iloc[batch_idx]
with torch.no_grad():
logits, Y_prob, Y_hat, _, results_dict = model(data)
acc_logger.log(Y_hat, label)
probs = Y_prob.cpu().numpy()
all_probs[batch_idx] = probs
all_labels[batch_idx] = label.item()
all_preds[batch_idx] = Y_hat.item()
patient_results.update({case_id: {'case_id': np.array(case_id), 'prob': probs, 'label': label.item()}})
error = calculate_error(Y_hat, label)
test_error += error
del data
test_error /= len(loader)
if args.n_classes > 2:
# pdb.set_trace()
acc1, acc3 = accuracy(torch.from_numpy(all_probs), torch.from_numpy(all_labels), topk=(1, 3))
print('top1 acc: {:.3f}, top3 acc: {:.3f}'.format(acc1.item(), acc3.item()))
if len(np.unique(all_labels)) == 1:
auc_score = -1
aucs = []
else:
if args.n_classes == 2:
auc_score = roc_auc_score(all_labels, all_probs[:, 1])
aucs = []
else:
aucs = []
binary_labels = label_binarize(all_labels, classes=[i for i in range(args.n_classes)])
for class_idx in range(args.n_classes):
if class_idx in all_labels:
fpr, tpr, _ = roc_curve(binary_labels[:, class_idx], all_probs[:, class_idx])
aucs.append(auc(fpr, tpr))
else:
aucs.append(float('nan'))
if args.micro_average:
binary_labels = label_binarize(all_labels, classes=[i for i in range(args.n_classes)])
fpr, tpr, _ = roc_curve(binary_labels.ravel(), all_probs.ravel())
auc_score = auc(fpr, tpr)
else:
auc_score = np.nanmean(np.array(aucs))
if not args.patient_level:
results_dict = {'slide_id': slide_ids, 'Y': all_labels, 'Y_hat': all_preds}
else:
results_dict = {'case_id': case_ids, 'Y': all_labels, 'Y_hat': all_preds}
for c in range(args.n_classes):
results_dict.update({'p_{}'.format(c): all_probs[:,c]})
df = pd.DataFrame(results_dict)
if args.patient_level:
df = df.drop_duplicates(subset=['case_id'])
return patient_results, test_error, auc_score, aucs, df, acc_logger
def infer_dataset(model, dataset, args, class_labels, k=3):
model.eval()
all_probs = np.zeros((len(dataset), k))
all_preds = np.zeros((len(dataset), k))
all_preds_str = np.full((len(dataset), k), ' ', dtype=object)
slide_ids = dataset.slide_data
for batch_idx, data in enumerate(dataset):
data = data.to(device)
with torch.no_grad():
logits, Y_prob, Y_hat, _, results_dict = model(data)
probs, ids = torch.topk(Y_prob, k)
probs = probs.cpu().numpy()
ids = ids.cpu().numpy()
all_probs[batch_idx] = probs
all_preds[batch_idx] = ids
all_preds_str[batch_idx] = np.array(class_labels)[ids]
del data
results_dict = {'slide_id': slide_ids}
for c in range(k):
results_dict.update({'Pred_{}'.format(c): all_preds_str[:, c]})
results_dict.update({'p_{}'.format(c): all_probs[:, c]})
df = pd.DataFrame(results_dict)
return df
# def infer_dataset(model, dataset, args, class_labels, k=3):
# model.eval()
# all_probs = np.zeros((len(dataset), args.n_classes))
# all_preds = np.zeros(len(dataset))
# all_str_preds = np.full(len(dataset), ' ', dtype=object)
# slide_ids = dataset.slide_data
# for batch_idx, data in enumerate(dataset):
# data = data.to(device)
# with torch.no_grad():
# logits, Y_prob, Y_hat, _, results_dict = model(data)
# probs = Y_prob.cpu().numpy()
# all_probs[batch_idx] = probs
# all_preds[batch_idx] = Y_hat.item()
# all_str_preds[batch_idx] = class_labels[Y_hat.item()]
# del data
# results_dict = {'slide_id': slide_ids, 'Prediction': all_str_preds, 'Y_hat': all_preds}
# for c in range(args.n_classes):
# results_dict.update({'p_{}_{}'.format(c, class_labels[c]): all_probs[:,c]})
# df = pd.DataFrame(results_dict)
# return df
def compute_features(dataset, args, ckpt_path, save_dir, model=None, feature_dim=512):
if model is None:
model = initiate_model(args, ckpt_path)
names = dataset.get_list(np.arange(len(dataset))).values
file_path = os.path.join(save_dir, 'features.h5')
initialize_features_hdf5_file(file_path, len(dataset), feature_dim=feature_dim, names=names)
for i in range(len(dataset)):
print("Progress: {}/{}".format(i, len(dataset)))
save_features(dataset, i, model, args, file_path)
def save_features(dataset, idx, model, args, save_file_path):
name = dataset.get_list(idx)
print(name)
features, label = dataset[idx]
features = features.to(device)
with torch.no_grad():
if type(model) == CLAM:
_, Y_prob, Y_hat, _, results_dict = model(features, instance_eval=False, return_features=True)
bag_feat = results_dict['features'][Y_hat.item()]
else:
_, Y_prob, Y_hat, _, results_dict = model(features, return_features=True)
bag_feat = results_dict['features']
del features
Y_hat = Y_hat.item()
Y_prob = Y_prob.view(-1).cpu().numpy()
bag_feat = bag_feat.view(1, -1).cpu().numpy()
with h5py.File(save_file_path, 'r+') as file:
print('label', label)
file['features'][idx, :] = bag_feat
file['label'][idx] = label
file['Y_hat'][idx] = Y_hat
file['Y_prob'][idx] = Y_prob[Y_hat]
def initialize_features_hdf5_file(file_path, length, feature_dim=512, names = None):
file = h5py.File(file_path, "w")
dset = file.create_dataset('features',
shape=(length, feature_dim), chunks=(1, feature_dim), dtype=np.float32)
# if names is not None:
# names = np.array(names, dtype='S')
# dset.attrs['names'] = names
if names is not None:
dt = h5py.string_dtype()
label_dset = file.create_dataset('names',
shape=(length, ), chunks=(1, ), dtype=dt)
file['names'][:] = names
label_dset = file.create_dataset('label',
shape=(length, ), chunks=(1, ), dtype=np.int32)
pred_dset = file.create_dataset('Y_hat',
shape=(length, ), chunks=(1, ), dtype=np.int32)
prob_dset = file.create_dataset('Y_prob',
shape=(length, ), chunks=(1, ), dtype=np.float32)
file.close()
return file_path