import pickle
import torch
import numpy as np
import torch.nn as nn
import pdb
import torch
import numpy as np
import torch.nn as nn
from torchvision import transforms
from torch.utils.data import DataLoader, Sampler, WeightedRandomSampler, RandomSampler, SequentialSampler, sampler
import torch.optim as optim
import pdb
import torch.nn.functional as F
import math
from itertools import islice
import collections
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
class SubsetSequentialSampler(Sampler):
"""Samples elements sequentially from a given list of indices, without replacement.
Arguments:
indices (sequence): a sequence of indices
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return iter(self.indices)
def __len__(self):
return len(self.indices)
def collate_MIL_mtl_sex(batch):
img = torch.cat([item[0] for item in batch], dim = 0)
label = torch.LongTensor([item[1] for item in batch])
site = torch.LongTensor([item[2] for item in batch])
sex = torch.LongTensor([item[3] for item in batch])
# for item in batch:
# print(item)
return [img, label, site, sex]
def collate_MIL_mtl(batch):
img = torch.cat([item[0] for item in batch], dim = 0)
label_task1 = torch.LongTensor([item[1] for item in batch])
label_task2 = torch.LongTensor([item[2] for item in batch])
label_task3 = torch.LongTensor([item[3] for item in batch])
# for item in batch:
# print(item)
return [img, label_task1, label_task2, label_task3]
def collate_MIL(batch):
img = torch.cat([item[0] for item in batch], dim = 0)
label = torch.LongTensor([item[1] for item in batch])
return [img, label]
def collate_features(batch):
img = torch.cat([item[0] for item in batch], dim = 0)
coords = np.vstack([item[1] for item in batch])
return [img, coords]
collate_dict = {'MIL': collate_MIL, 'MIL_mtl': collate_MIL_mtl, 'MIL_mtl_sex': collate_MIL_mtl_sex, 'MIL_sex': collate_MIL_mtl}
def get_simple_loader(dataset, batch_size=1, collate_fn='MIL'):
kwargs = {'num_workers': 32} if device.type == "cuda" else {}
collate = collate_dict[collate_fn]
loader = DataLoader(dataset, batch_size=batch_size, sampler = sampler.SequentialSampler(dataset), collate_fn = collate, **kwargs)
return loader
def get_split_loader(split_dataset, training = False, testing = False, weighted = False, collate_fn='MIL'):
"""
return either the validation loader or training loader
"""
collate = collate_dict[collate_fn]
kwargs = {'num_workers': 4} if device.type == "cuda" else {}
if not testing:
if training:
if weighted:
weights = make_weights_for_balanced_classes_split(split_dataset)
loader = DataLoader(split_dataset, batch_size=1, sampler = WeightedRandomSampler(weights, len(weights)), collate_fn = collate, **kwargs)
else:
loader = DataLoader(split_dataset, batch_size=1, sampler = RandomSampler(split_dataset), collate_fn = collate, **kwargs)
else:
loader = DataLoader(split_dataset, batch_size=1, sampler = SequentialSampler(split_dataset), collate_fn = collate, **kwargs)
else:
ids = np.random.choice(np.arange(len(split_dataset)), int(len(split_dataset)*0.01), replace = False)
loader = DataLoader(split_dataset, batch_size=1, sampler = SubsetSequentialSampler(ids), collate_fn = collate, **kwargs )
return loader
def get_optim(model, args):
if args.opt == "adam":
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.reg)
elif args.opt == 'sgd':
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=0.9, weight_decay=args.reg)
else:
raise NotImplementedError
return optimizer
def print_network(net):
num_params = 0
num_params_train = 0
print(net)
for param in net.parameters():
n = param.numel()
num_params += n
if param.requires_grad:
num_params_train += n
print('Total number of parameters: %d' % num_params)
print('Total number of trainable parameters: %d' % num_params_train)
def generate_split(cls_ids, val_num, test_num, samples, n_splits = 5,
seed = 7, label_frac = 1.0, custom_test_ids = None):
indices = np.arange(samples).astype(int)
if custom_test_ids is not None:
indices = np.setdiff1d(indices, custom_test_ids)
np.random.seed(seed)
for i in range(n_splits):
all_val_ids = []
all_test_ids = []
sampled_train_ids = []
if custom_test_ids is not None: # pre-built test split, do not need to sample
all_test_ids.extend(custom_test_ids)
for c in range(len(val_num)):
if c == 38:
pdb.set_trace()
possible_indices = np.intersect1d(cls_ids[c], indices) #all indices of this class
remaining_ids = possible_indices
if val_num[c] > 0:
val_ids = np.random.choice(possible_indices, val_num[c], replace = False) # validation ids
remaining_ids = np.setdiff1d(possible_indices, val_ids) #indices of this class left after validation
all_val_ids.extend(val_ids)
if custom_test_ids is None and test_num[c] > 0: # sample test split
test_ids = np.random.choice(remaining_ids, test_num[c], replace = False)
remaining_ids = np.setdiff1d(remaining_ids, test_ids)
all_test_ids.extend(test_ids)
if label_frac == 1:
sampled_train_ids.extend(remaining_ids)
else:
sample_num = math.ceil(len(remaining_ids) * label_frac)
slice_ids = np.arange(sample_num)
sampled_train_ids.extend(remaining_ids[slice_ids])
yield sampled_train_ids, all_val_ids, all_test_ids
def nth(iterator, n, default=None):
if n is None:
return collections.deque(iterator, maxlen=0)
else:
return next(islice(iterator,n, None), default)
def calculate_error(Y_hat, Y):
error = 1. - Y_hat.float().eq(Y.float()).float().mean().item()
return error
def make_weights_for_balanced_classes_split(dataset):
N = float(len(dataset))
weight_per_class = [N/len(dataset.slide_cls_ids[c]) for c in range(len(dataset.slide_cls_ids))]
weight = [0] * int(N)
for idx in range(len(dataset)):
y = dataset.getlabel(idx)
weight[idx] = weight_per_class[y]
return torch.DoubleTensor(weight)
def initialize_weights(module):
for m in module.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)