Diff of /utils/eval_utils_mtl.py [000000] .. [4cd6c8]

Switch to side-by-side view

--- a
+++ b/utils/eval_utils_mtl.py
@@ -0,0 +1,444 @@
+import numpy as np
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from models.model_attention_mil import MIL_Attention_fc_mtl
+import pdb
+import os
+import pandas as pd
+from utils.utils import *
+from utils.core_utils import EarlyStopping,  Accuracy_Logger
+from utils.file_utils import save_pkl, load_pkl
+from sklearn.metrics import roc_auc_score, roc_curve, auc
+import h5py
+from models.resnet_custom import resnet50_baseline
+import math
+from sklearn.preprocessing import label_binarize
+
+def initiate_model(args, ckpt_path=None):
+    print('Init Model')
+    model_dict = {"dropout": args.drop_out, 'n_classes': args.n_classes}
+
+    if args.model_size is not None and args.model_type in ['clam', 'attention_mil', 'clam_simple']:
+        model_dict.update({"size_arg": args.model_size})
+
+    if args.model_type =='clam':
+        raise NotImplementedError
+    elif args.model_type =='clam_simple':
+        raise NotImplementedError
+    elif args.model_type == 'attention_mil':
+        model = MIL_Attention_fc_mtl(**model_dict)
+    else: # args.model_type == 'mil'
+        raise NotImplementedError
+
+    #model.relocate()
+    print_network(model)
+
+    if ckpt_path is not None:
+        ckpt = torch.load(ckpt_path)
+        ckpt_clean = {}
+        for key in ckpt.keys():
+            if 'instance_loss_fn' in key:
+                continue
+            ckpt_clean.update({key.replace('.module', ''):ckpt[key]})
+        model.load_state_dict(ckpt_clean, strict=True)
+    model.relocate()
+    model.eval()
+    return model
+
+
+def eval(dataset, args, ckpt_path):
+    model = initiate_model(args, ckpt_path)
+
+
+    print('Init Loaders')
+    loader = get_simple_loader(dataset, collate_fn='MIL_mtl')
+    results_dict = summary(model, loader, args)
+
+    print('test_error_task1: ', results_dict['test_error_task1'])
+    print('auc_task1: ',        results_dict['auc_task1'])
+    print('test_error_task2: ', results_dict['test_error_task2'])
+    print('auc_task2: ',        results_dict['auc_task2'])
+    print('test_error_task3: ', results_dict['test_error_task3'])
+    print('auc_task3: ',        results_dict['auc_task3'])
+
+    return model, results_dict
+    # patient_results, test_error, auc, aucs, df
+
+def infer(dataset, args, ckpt_path, class_labels, site_labels):
+    model = initiate_model(args, ckpt_path)
+    df = infer_dataset(model, dataset, args, class_labels, site_labels)
+    return model, df
+
+# Code taken from pytorch/examples for evaluating topk classification on on ImageNet
+def accuracy(output, target, topk=(1,)):
+    """Computes the accuracy over the k top predictions for the specified values of k"""
+    with torch.no_grad():
+        maxk = max(topk)
+        batch_size = target.size(0)
+
+        _, pred = output.topk(maxk, 1, True, True)
+        pred = pred.t()
+        correct = pred.eq(target.view(1, -1).expand_as(pred))
+
+        res = []
+        for k in topk:
+            correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
+            res.append(correct_k.mul_(1.0 / batch_size))
+        return res
+
+def summary(model, loader, args):
+    device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
+    logger_task1 = Accuracy_Logger(n_classes=args.n_classes[0])
+    logger_task2 = Accuracy_Logger(n_classes=args.n_classes[1])
+    logger_task3 = Accuracy_Logger(n_classes=args.n_classes[2])
+    model.eval()
+
+    test_error_task1 = 0.
+    test_loss_task1  = 0.
+    test_error_task2 = 0.
+    test_loss_task2  = 0.
+    test_error_task3 = 0.
+    test_loss_task3  = 0.
+
+    all_probs_task1  = np.zeros((len(loader), args.n_classes[0]))
+    all_labels_task1 = np.zeros(len(loader))
+    all_probs_task2  = np.zeros((len(loader), args.n_classes[1]))
+    all_labels_task2 = np.zeros(len(loader))
+    all_probs_task3  = np.zeros((len(loader), args.n_classes[2]))
+    all_labels_task3 = np.zeros(len(loader))
+
+    if not args.patient_level:
+        slide_ids = loader.dataset.slide_data['slide_id']
+        patient_results = {}
+
+        for batch_idx, (data, label_task1, label_task2, label_task3) in enumerate(loader):
+            data =  data.to(device)	    
+            label_task1 = label_task1.to(device)
+            label_task2 = label_task2.to(device)            
+            label_task3 = label_task3.to(device)
+
+            slide_id = slide_ids.iloc[batch_idx]
+            with torch.no_grad():
+                model_results_dict = model(data)
+
+            logits_task1, Y_prob_task1, Y_hat_task1  = model_results_dict['logits_task1'], model_results_dict['Y_prob_task1'], model_results_dict['Y_hat_task1']
+            logits_task2, Y_prob_task2, Y_hat_task2  = model_results_dict['logits_task2'], model_results_dict['Y_prob_task2'], model_results_dict['Y_hat_task2']
+            logits_task3, Y_prob_task3, Y_hat_task3  = model_results_dict['logits_task3'], model_results_dict['Y_prob_task3'], model_results_dict['Y_hat_task3']
+            del model_results_dict
+
+            logger_task1.log(Y_hat_task1, label_task1)
+            logger_task2.log(Y_hat_task2, label_task2)
+            logger_task3.log(Y_hat_task3, label_task3)
+
+            probs_task1 = Y_prob_task1.cpu().numpy()
+            all_probs_task1[batch_idx] = probs_task1
+            all_labels_task1[batch_idx] = label_task1.item()
+
+            probs_task2 = Y_prob_task2.cpu().numpy()
+            all_probs_task2[batch_idx] = probs_task2
+            all_labels_task2[batch_idx] = label_task2.item()
+
+            probs_task3 = Y_prob_task3.cpu().numpy()
+            all_probs_task3[batch_idx] = probs_task3
+            all_labels_task3[batch_idx] = label_task3.item()
+
+            patient_results.update({slide_id: {'slide_id': np.array(slide_id),
+				    'prob_task1': probs_task1, 'label_task1': label_task1.item(),
+				    'prob_task2': probs_task2, 'label_task2': label_task2.item(),
+				    'prob_task3': probs_task3, 'label_task3': label_task3.item() }})
+
+            error_task1 = calculate_error(Y_hat_task1, label_task1)
+            test_error_task1 += error_task1
+            error_task2 = calculate_error(Y_hat_task2, label_task2)
+            test_error_task2 += error_task2
+            error_task3 = calculate_error(Y_hat_task3, label_task3)
+            test_error_task3 += error_task3
+    else:
+        case_ids = loader.dataset.slide_data['case_id']
+        patient_results = {}
+
+        for batch_idx, (data, label_task1, label_task2, label_task3) in enumerate(loader):
+            data =  data.to(device)
+            label_task1 = label_task1.to(device)
+            label_task2 = label_task2.to(device)
+            label_task3 = label_task3.to(device)
+
+            case_id = case_ids.iloc[batch_idx]
+            with torch.no_grad():
+                model_results_dict = model(data)
+
+            logits_task1, Y_prob_task1, Y_hat_task1  = model_results_dict['logits_task1'], model_results_dict['Y_prob_task1'], model_results_dict['Y_hat_task1']
+            logits_task2, Y_prob_task2, Y_hat_task2  = model_results_dict['logits_task2'], model_results_dict['Y_prob_task2'], model_results_dict['Y_hat_task2']
+            logits_task3, Y_prob_task3, Y_hat_task3  = model_results_dict['logits_task3'], model_results_dict['Y_prob_task3'], model_results_dict['Y_hat_task3']
+            del model_results_dict
+
+            logger_task1.log(Y_hat_task1, label_task1)
+            logger_task2.log(Y_hat_task2, label_task2)
+            logger_task3.log(Y_hat_task3, label_task3)
+
+            probs_task1 = Y_prob_task1.cpu().numpy()
+            all_probs_task1[batch_idx] = probs_task1
+            all_labels_task1[batch_idx] = label_task1.item()
+
+            probs_task2 = Y_prob_task2.cpu().numpy()
+            all_probs_task2[batch_idx] = probs_task2
+            all_labels_task2[batch_idx] = label_task2.item()
+
+            probs_task3 = Y_prob_task3.cpu().numpy()
+            all_probs_task3[batch_idx] = probs_task3
+            all_labels_task3[batch_idx] = label_task3.item()
+
+            patient_results.update({case_id: {'case_id': np.array(case_id),
+                                    'prob_task1': probs_task1, 'label_task1': label_task1.item(),
+                                    'prob_task2': probs_task2, 'label_task2': label_task2.item(),
+                                    'prob_task3': probs_task3, 'label_task3': label_task3.item() }})
+
+            error_task1 = calculate_error(Y_hat_task1, label_task1)
+            test_error_task1 += error_task1
+            error_task2 = calculate_error(Y_hat_task2, label_task2)
+            test_error_task2 += error_task2
+            error_task3 = calculate_error(Y_hat_task3, label_task3)
+            test_error_task3 += error_task3
+
+
+    test_error_task1 /= len(loader)
+    test_error_task2 /= len(loader)
+    test_error_task3 /= len(loader)
+
+    all_preds_task1 = np.argmax(all_probs_task1, axis=1)
+    all_preds_task2 = np.argmax(all_probs_task2, axis=1)
+    all_preds_task3 = np.argmax(all_probs_task3, axis=1)
+
+        
+
+    #if args.n_classes > 2:
+    #    acc1, acc3 = accuracy(torch.from_numpy(all_cls_probs), torch.from_numpy(all_cls_labels), topk=(1, 3))
+    #    print('top1 acc: {:.3f}, top3 acc: {:.3f}'.format(acc1.item(), acc3.item()))
+
+    # IF MORE THAN BINARY CLASSIFICATION
+    #if len(np.unique(all_labels_task1)) == 1:
+    #    auc_task1 = -1
+    #    aucs_task1 = []
+    # else:
+    #     if args.n_classes[0] == 2:
+    #         auc_task1 = roc_auc_score(all_labels_task1, all_probs_task1[:, 1])
+    #         aucs_task1 = []
+    #     else:
+    #         aucs_task1 = []
+    #         binary_labels = label_binarize(all_labels_task1, classes=[i for i in range(args.n_classes[0])])
+    #         for class_idx in range(args.n_classes[0[]]):
+    #             if class_idx in all_labels_task1:
+    #                 fpr, tpr, _ = roc_curve(binary_labels[:, class_idx], all_probs_task1[:, class_idx])
+    #                 aucs_task1.append(auc(fpr, tpr))
+    #             else:
+    #                 aucs_task1.append(float('nan'))
+    #         if args.micro_average:
+    #             binary_labels = label_binarize(all_labels_task1, classes=[i for i in range(args.n_classes[0])])
+    #             fpr, tpr, _ = roc_curve(binary_labels.ravel(), all_probs_task1.ravel())
+    #             auc_task1 = auc(fpr, tpr)
+    #         else:
+    #             auc_task1 = np.nanmean(np.array(aucs_task1))
+
+
+    # ASSUME BINARY CLASSIFICATION
+    if len(np.unique(all_labels_task1)) == 1:
+        auc_task1 = -1
+    else:
+        auc_task1 = roc_auc_score(all_labels_task1, all_probs_task1[:, 1])
+
+    if len(np.unique(all_labels_task2)) == 1:
+        auc_task2 = -1
+    else:
+        auc_task2 = roc_auc_score(all_labels_task2, all_probs_task2[:, 1])
+
+    if len(np.unique(all_labels_task3)) == 1:
+        auc_task3 = -1
+    else:
+        auc_task3 = roc_auc_score(all_labels_task3, all_probs_task3[:, 1])
+
+    if not args.patient_level:
+        results_dict = {'slide_id': slide_ids,
+			'Y_task1': all_labels_task1, 'Y_hat_task1': all_preds_task1,
+			'Y_task2': all_labels_task2, 'Y_hat_task2': all_preds_task2,
+			'Y_task3': all_labels_task3, 'Y_hat_task3': all_preds_task3}
+    else:
+        results_dict = {'case_id': case_ids,
+                        'Y_task1': all_labels_task1, 'Y_hat_task1': all_preds_task1,
+                        'Y_task2': all_labels_task2, 'Y_hat_task2': all_preds_task2,
+                        'Y_task3': all_labels_task3, 'Y_hat_task3': all_preds_task3}
+    
+    results_dict.update({'p0_task1': all_probs_task1[:,0]})
+    results_dict.update({'p1_task1': all_probs_task1[:,1]})
+    results_dict.update({'p0_task2': all_probs_task2[:,0]})
+    results_dict.update({'p1_task2': all_probs_task2[:,1]})
+    results_dict.update({'p0_task3': all_probs_task3[:,0]})
+    results_dict.update({'p1_task3': all_probs_task3[:,1]})
+
+    df = pd.DataFrame(results_dict)
+
+    if args.patient_level:
+        df = df.drop_duplicates(subset=['case_id'])
+
+    inference_results = {'patient_results': patient_results,
+                        'test_error_task1': test_error_task1, 'auc_task1': auc_task1,
+                        'test_error_task2': test_error_task2, 'auc_task2': auc_task2,
+                        'test_error_task3': test_error_task3, 'auc_task3': auc_task3,
+                        'loggers': (logger_task1, logger_task2, logger_task3), 'df':df}
+
+    return inference_results
+
+
+def infer_dataset(model, dataset, args, class_labels, site_labels, k=3):
+    model.eval()
+    all_probs_cls = np.zeros((len(dataset), k))
+    all_probs_site = np.zeros((len(dataset),2))
+
+    all_preds_cls = np.zeros((len(dataset), k))
+    all_preds_cls_str = np.full((len(dataset), k), ' ', dtype=object)
+    all_preds_site = np.full((len(dataset)), ' ', dtype=object)
+
+    slide_ids = dataset.slide_data
+    for batch_idx, data in enumerate(dataset):
+        data = data.to(device)
+        with torch.no_grad():
+            results_dict = model(data)
+
+        Y_prob, Y_hat = results_dict['Y_prob'], results_dict['Y_hat']
+        site_prob, site_hat = results_dict['site_prob'], results_dict['site_hat']
+        del results_dict
+        probs, ids = torch.topk(Y_prob, k)
+        probs = probs.cpu().numpy()
+        site_prob = site_prob.cpu().numpy()
+        ids = ids.cpu().numpy()
+        all_probs_cls[batch_idx] = probs
+        all_preds_cls[batch_idx] = ids
+        all_preds_cls_str[batch_idx] = np.array(class_labels)[ids]
+
+        all_probs_site[batch_idx] = site_prob
+        all_preds_site[batch_idx] = np.array(site_labels)[site_hat.item()]
+
+    del data
+    results_dict = {'slide_id': slide_ids}
+    for c in range(k):
+        results_dict.update({'Pred_{}'.format(c): all_preds_cls_str[:, c]})
+        results_dict.update({'p_{}'.format(c): all_probs_cls[:, c]})
+    results_dict.update({'Site_Pred': all_preds_site, 'Site_p': all_probs_site[:, 1]})
+    df = pd.DataFrame(results_dict)
+    return df
+
+# def infer_dataset(model, dataset, args, class_labels, k=3):
+#     model.eval()
+
+#     all_probs = np.zeros((len(dataset), args.n_classes))
+#     all_preds = np.zeros(len(dataset))
+#     all_str_preds = np.full(len(dataset), ' ', dtype=object)
+
+#     slide_ids = dataset.slide_data
+#     for batch_idx, data in enumerate(dataset):
+#         data = data.to(device)
+#         with torch.no_grad():
+#             logits, Y_prob, Y_hat, _, results_dict = model(data)
+
+#         probs = Y_prob.cpu().numpy()
+#         all_probs[batch_idx] = probs
+#         all_preds[batch_idx] = Y_hat.item()
+#         all_str_preds[batch_idx] = class_labels[Y_hat.item()]
+#     del data
+
+#     results_dict = {'slide_id': slide_ids, 'Prediction': all_str_preds, 'Y_hat': all_preds}
+#     for c in range(args.n_classes):
+#         results_dict.update({'p_{}_{}'.format(c, class_labels[c]): all_probs[:,c]})
+#     df = pd.DataFrame(results_dict)
+#     return df
+
+def compute_features(dataset, args, ckpt_path, save_dir, model=None, feature_dim=512):
+    if model is None:
+        model = initiate_model(args, ckpt_path)
+
+    names = dataset.get_list(np.arange(len(dataset))).values
+    file_path = os.path.join(save_dir, 'features.h5')
+
+    initialize_features_hdf5_file(file_path, len(dataset), feature_dim=feature_dim, names=names)
+    for i in range(len(dataset)):
+        print("Progress: {}/{}".format(i, len(dataset)))
+        save_features(dataset, i, model, args, file_path)
+
+def save_features(dataset, idx, model, args, save_file_path):
+    name = dataset.get_list(idx)
+    print(name)
+    features, label_task1, label_task2, label_task3 = dataset[idx]
+    features = features.to(device)
+    with torch.no_grad():
+        results_dict = model(features, return_features=True)
+        Y_prob_task1, Y_hat_task1 = results_dict['Y_prob_task1'], results_dict['Y_hat_task1']
+        Y_prob_task2, Y_hat_task2 = results_dict['Y_prob_task2'], results_dict['Y_hat_task2']
+        Y_prob_task3, Y_hat_task3 = results_dict['Y_prob_task3'], results_dict['Y_hat_task3']
+
+        feat_task1 = results_dict['features'][0]
+        feat_task2 = results_dict['features'][1]
+        feat_task3 = results_dict['features'][2]
+
+    del results_dict
+    del features
+
+    Y_hat_task1  = Y_hat_task1.item()
+    Y_prob_task1 = Y_prob_task1.view(-1).cpu().numpy()
+    Y_hat_task2  = Y_hat_task2.item()
+    Y_prob_task2 = Y_prob_task2.view(-1).cpu().numpy()
+    Y_hat_task3  = Y_hat_task3.item()
+    Y_prob_task3 = Y_prob_task3.view(-1).cpu().numpy()
+
+    feat_task1 = feat_task1.view(1, -1).cpu().numpy()
+    feat_task2 = feat_task2.view(1, -1).cpu().numpy()
+    feat_task3 = feat_task3.view(1, -1).cpu().numpy()
+
+    with h5py.File(save_file_path, 'r+') as file:
+        print('label_task1', label_task1)
+        file['features_task1'][idx, :] = feat_task1
+        file['features_task2'][idx, :] = feat_task2
+        file['features_task3'][idx, :] = feat_task3
+        file['label_task1'][idx] = label_task1
+        file['Y_hat_task1'][idx] = Y_hat_task1
+        file['Y_prob_task1'][idx] = Y_prob_task1[1]
+        file['label_task2'][idx] = label_task2
+        file['Y_hat_task2'][idx] = Y_hat_task2
+        file['Y_prob_task2'][idx] = Y_prob_task2[1]
+        file['label_task3'][idx] = label_task3
+        file['Y_hat_task3'][idx] = Y_hat_task3
+        file['Y_prob_task3'][idx] = Y_prob_task3[1]
+
+
+
+def initialize_features_hdf5_file(file_path, length, feature_dim=512, names = None):
+
+    file = h5py.File(file_path, "w")
+
+    dset = file.create_dataset('features_task1',
+                                shape=(length, feature_dim), chunks=(1, feature_dim), dtype=np.float32)
+    dset = file.create_dataset('features_task2',
+                                shape=(length, feature_dim), chunks=(1, feature_dim), dtype=np.float32)
+    dset = file.create_dataset('features_task3',
+                                shape=(length, feature_dim), chunks=(1, feature_dim), dtype=np.float32)
+
+    # if names is not None:
+    #     names = np.array(names, dtype='S')
+    #     dset.attrs['names'] = names
+    if names is not None:
+        dt = h5py.string_dtype()
+        label_dset = file.create_dataset('names', shape=(length, ), chunks=(1, ), dtype=dt)
+        file['names'][:] = names
+
+    label_dset = file.create_dataset('label_task1', shape=(length, ), chunks=(1, ), dtype=np.int32)
+    pred_dset = file.create_dataset( 'Y_hat_task1', shape=(length, ), chunks=(1, ), dtype=np.int32)
+    prob_dset = file.create_dataset( 'Y_prob_task1', shape=(length, ), chunks=(1, ), dtype=np.float32)
+    label_dset = file.create_dataset('label_task2', shape=(length, ), chunks=(1, ), dtype=np.int32)
+    pred_dset = file.create_dataset( 'Y_hat_task2', shape=(length, ), chunks=(1, ), dtype=np.int32)
+    prob_dset = file.create_dataset( 'Y_prob_task2', shape=(length, ), chunks=(1, ), dtype=np.float32)
+    label_dset = file.create_dataset('label_task3', shape=(length, ), chunks=(1, ), dtype=np.int32)
+    pred_dset = file.create_dataset( 'Y_hat_task3', shape=(length, ), chunks=(1, ), dtype=np.int32)
+    prob_dset = file.create_dataset( 'Y_prob_task3', shape=(length, ), chunks=(1, ), dtype=np.float32)
+
+    file.close()
+    return file_path