|
a |
|
b/main.py |
|
|
1 |
from __future__ import print_function |
|
|
2 |
|
|
|
3 |
import argparse |
|
|
4 |
import pdb |
|
|
5 |
import os |
|
|
6 |
import math |
|
|
7 |
|
|
|
8 |
# internal imports |
|
|
9 |
from utils.file_utils import save_pkl, load_pkl |
|
|
10 |
from utils.utils import * |
|
|
11 |
from utils.core_utils import train |
|
|
12 |
from utils.core_utils_mtl import train as train_mtl |
|
|
13 |
from datasets.dataset_generic import Generic_WSI_Classification_Dataset, Generic_MIL_Dataset |
|
|
14 |
from datasets.dataset_mtl import Generic_WSI_MTL_Dataset, Generic_MIL_MTL_Dataset |
|
|
15 |
|
|
|
16 |
# pytorch imports |
|
|
17 |
import torch |
|
|
18 |
from torch.utils.data import DataLoader, sampler |
|
|
19 |
import torch.nn as nn |
|
|
20 |
import torch.nn.functional as F |
|
|
21 |
|
|
|
22 |
import pandas as pd |
|
|
23 |
import numpy as np |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
# Rejection grade: |
|
|
27 |
# binary classifier: |
|
|
28 |
# class 0 - low grade |
|
|
29 |
# class 1 - high grade |
|
|
30 |
#------------------------------- |
|
|
31 |
def main_grade(args): |
|
|
32 |
print("-----------------------------------------") |
|
|
33 |
print(" Grade Net (single task binary classifier") |
|
|
34 |
print("-----------------------------------------") |
|
|
35 |
|
|
|
36 |
# create results directory if necessary |
|
|
37 |
if not os.path.isdir(args.results_dir): |
|
|
38 |
os.mkdir(args.results_dir) |
|
|
39 |
|
|
|
40 |
if args.k_start == -1: |
|
|
41 |
start = 0 |
|
|
42 |
else: |
|
|
43 |
start = args.k_start |
|
|
44 |
if args.k_end == -1: |
|
|
45 |
end = args.k |
|
|
46 |
else: |
|
|
47 |
end = args.k_end |
|
|
48 |
|
|
|
49 |
all_test_auc = [] |
|
|
50 |
all_val_auc = [] |
|
|
51 |
all_test_acc = [] |
|
|
52 |
all_val_acc = [] |
|
|
53 |
folds = np.arange(start, end) |
|
|
54 |
for i in folds: |
|
|
55 |
seed_torch(args.seed) |
|
|
56 |
train_dataset, val_dataset, test_dataset = dataset.return_splits(from_id=False, |
|
|
57 |
csv_path='{}/splits_{}.csv'.format(args.split_dir, i)) |
|
|
58 |
|
|
|
59 |
datasets = (train_dataset, val_dataset, test_dataset) |
|
|
60 |
results, test_auc, val_auc, test_acc, val_acc = train(datasets, i, args) |
|
|
61 |
all_test_auc.append(test_auc) |
|
|
62 |
all_val_auc.append(val_auc) |
|
|
63 |
all_test_acc.append(test_acc) |
|
|
64 |
all_val_acc.append(val_acc) |
|
|
65 |
#write results to pkl |
|
|
66 |
filename = os.path.join(args.results_dir, 'split_{}_results.pkl'.format(i)) |
|
|
67 |
save_pkl(filename, results) |
|
|
68 |
|
|
|
69 |
final_df = pd.DataFrame({'folds': folds, 'test_auc': all_test_auc, |
|
|
70 |
'val_auc': all_val_auc, 'test_acc': all_test_acc, 'val_acc' : all_val_acc}) |
|
|
71 |
|
|
|
72 |
if len(folds) != args.k: |
|
|
73 |
save_name = 'summary_partial_{}_{}.csv'.format(start, end) |
|
|
74 |
else: |
|
|
75 |
save_name = 'summary.csv' |
|
|
76 |
final_df.to_csv(os.path.join(args.results_dir, save_name)) |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
# Multi task classifier for EMB evaluation: |
|
|
80 |
# consist of 3 simultaneous tasks: |
|
|
81 |
# task1: cellular vs non-cellular |
|
|
82 |
# task2: antibody vs non-antibody |
|
|
83 |
# task3: quilty lesion vs no quilty lesion |
|
|
84 |
#------------------------------------------- |
|
|
85 |
def main_mtl(args): |
|
|
86 |
|
|
|
87 |
print("----------------------------------------") |
|
|
88 |
print(" EMB assessment - multi task classifier ") |
|
|
89 |
print("----------------------------------------") |
|
|
90 |
|
|
|
91 |
# create results directory if necessary |
|
|
92 |
if not os.path.isdir(args.results_dir): |
|
|
93 |
os.mkdir(args.results_dir) |
|
|
94 |
|
|
|
95 |
if args.k_start == -1: |
|
|
96 |
start = 0 |
|
|
97 |
else: |
|
|
98 |
start = args.k_start |
|
|
99 |
if args.k_end == -1: |
|
|
100 |
end = args.k |
|
|
101 |
else: |
|
|
102 |
end = args.k_end |
|
|
103 |
|
|
|
104 |
# arrays to collect scores -- replace by generic one when refactoring |
|
|
105 |
all_task1_test_auc = [] |
|
|
106 |
all_task1_val_auc = [] |
|
|
107 |
all_task1_test_acc = [] |
|
|
108 |
all_task1_val_acc = [] |
|
|
109 |
|
|
|
110 |
all_task2_test_auc = [] |
|
|
111 |
all_task2_val_auc = [] |
|
|
112 |
all_task2_test_acc = [] |
|
|
113 |
all_task2_val_acc = [] |
|
|
114 |
|
|
|
115 |
all_task3_test_auc = [] |
|
|
116 |
all_task3_val_auc = [] |
|
|
117 |
all_task3_test_acc = [] |
|
|
118 |
all_task3_val_acc = [] |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
folds = np.arange(start, end) |
|
|
122 |
for i in folds: |
|
|
123 |
seed_torch(args.seed) |
|
|
124 |
train_dataset, val_dataset, test_dataset = dataset.return_splits(from_id=False, |
|
|
125 |
csv_path='{}/splits_{}.csv'.format(args.split_dir, i)) |
|
|
126 |
|
|
|
127 |
print('training: {}, validation: {}, testing: {}'.format(len(train_dataset), len(val_dataset), len(test_dataset))) |
|
|
128 |
datasets = (train_dataset, val_dataset, test_dataset) |
|
|
129 |
|
|
|
130 |
results, \ |
|
|
131 |
task1_test_auc, task1_val_auc, task1_test_acc, task1_val_acc, \ |
|
|
132 |
task2_test_auc, task2_val_auc, task2_test_acc, task2_val_acc, \ |
|
|
133 |
task3_test_auc, task3_val_auc, task3_test_acc, task3_val_acc = train_mtl(datasets, i, args) |
|
|
134 |
|
|
|
135 |
all_task1_test_auc.append(task1_test_auc) |
|
|
136 |
all_task1_val_auc.append( task1_val_auc ) |
|
|
137 |
all_task1_test_acc.append(task1_test_acc) |
|
|
138 |
all_task1_val_acc.append( task1_val_acc ) |
|
|
139 |
|
|
|
140 |
all_task2_test_auc.append(task2_test_auc) |
|
|
141 |
all_task2_val_auc.append( task2_val_auc ) |
|
|
142 |
all_task2_test_acc.append(task2_test_acc) |
|
|
143 |
all_task2_val_acc.append( task2_val_acc ) |
|
|
144 |
|
|
|
145 |
all_task3_test_auc.append(task3_test_auc) |
|
|
146 |
all_task3_val_auc.append( task3_val_auc ) |
|
|
147 |
all_task3_test_acc.append(task3_test_acc) |
|
|
148 |
all_task3_val_acc.append( task3_val_acc ) |
|
|
149 |
|
|
|
150 |
#write results to pkl |
|
|
151 |
filename = os.path.join(args.results_dir, 'split_{}_results.pkl'.format(i)) |
|
|
152 |
save_pkl(filename, results) |
|
|
153 |
|
|
|
154 |
final_df = pd.DataFrame({'folds': folds, |
|
|
155 |
'task1_test_auc': all_task1_test_auc, 'task1_val_auc': all_task1_val_auc, |
|
|
156 |
'task1_test_acc': all_task1_test_acc, 'task1_val_acc': all_task1_val_acc, |
|
|
157 |
'task2_test_auc': all_task2_test_auc, 'task2_val_auc': all_task2_val_auc, |
|
|
158 |
'task2_test_acc': all_task2_test_acc, 'task2_val_acc': all_task2_val_acc, |
|
|
159 |
'task3_test_auc': all_task3_test_auc, 'task3_val_auc': all_task3_val_auc, |
|
|
160 |
'task3_test_acc': all_task3_test_acc, 'task3_val_acc': all_task3_val_acc}) |
|
|
161 |
|
|
|
162 |
if len(folds) != args.k: |
|
|
163 |
save_name = 'summary_partial_{}_{}.csv'.format(start, end) |
|
|
164 |
else: |
|
|
165 |
save_name = 'summary.csv' |
|
|
166 |
final_df.to_csv(os.path.join(args.results_dir, save_name)) |
|
|
167 |
|
|
|
168 |
|
|
|
169 |
# Training settings |
|
|
170 |
parser = argparse.ArgumentParser(description='Configurations for WSI Training') |
|
|
171 |
parser.add_argument('--data_root_dir', type=str, default='/media/fedshyvana/ssd1', |
|
|
172 |
help='data directory') |
|
|
173 |
parser.add_argument('--max_epochs', type=int, default=200, |
|
|
174 |
help='maximum number of epochs to train (default: 200)') |
|
|
175 |
parser.add_argument('--lr', type=float, default=1e-4, |
|
|
176 |
help='learning rate (default: 0.0001)') |
|
|
177 |
parser.add_argument('--label_frac', type=float, default=1.0, |
|
|
178 |
help='fraction of training labels (default: 1.0)') |
|
|
179 |
parser.add_argument('--bag_weight', type=float, default=0.7, |
|
|
180 |
help='clam: weight coefficient for bag-level loss (default: 0.7)') |
|
|
181 |
parser.add_argument('--reg', type=float, default=1e-5, |
|
|
182 |
help='weight decay (default: 1e-5)') |
|
|
183 |
parser.add_argument('--seed', type=int, default=1, |
|
|
184 |
help='random seed for reproducible experiment (default: 1)') |
|
|
185 |
parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)') |
|
|
186 |
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)') |
|
|
187 |
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)') |
|
|
188 |
parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)') |
|
|
189 |
parser.add_argument('--split_dir', type=str, default=None, |
|
|
190 |
help='manually specify the set of splits to use, ' |
|
|
191 |
+'instead of infering from the task and label_frac argument (default: None)') |
|
|
192 |
parser.add_argument('--log_data', action='store_true', default=False, help='log data using tensorboard') |
|
|
193 |
parser.add_argument('--testing', action='store_true', default=False, help='debugging tool') |
|
|
194 |
parser.add_argument('--subtyping', action='store_true', default=False, help='subtyping problem') |
|
|
195 |
parser.add_argument('--early_stopping', action='store_true', default=False, help='enable early stopping') |
|
|
196 |
parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam') |
|
|
197 |
parser.add_argument('--drop_out', action='store_true', default=False, help='enabel dropout (p=0.25)') |
|
|
198 |
parser.add_argument('--inst_loss', type=str, choices=['svm', 'ce', None], default=None, |
|
|
199 |
help='instance-level clustering loss function (default: None)') |
|
|
200 |
parser.add_argument('--bag_loss', type=str, choices=['svm', 'ce'], default='ce', |
|
|
201 |
help='slide-level classification loss function (default: ce)') |
|
|
202 |
parser.add_argument('--model_type', type=str, choices=['clam', 'mil', 'clam_simple', 'attention_mil', 'histogram_mil'], default='attention_mil', help='type of model (default: attention_mil)') |
|
|
203 |
parser.add_argument('--exp_code', type=str, help='experiment code for saving results') |
|
|
204 |
parser.add_argument('--weighted_sample', action='store_true', default=False, help='enable weighted sampling') |
|
|
205 |
parser.add_argument('--model_size', type=str, choices=['small', 'big'], default='big', help='size of model') |
|
|
206 |
parser.add_argument('--mtl', action='store_true', default=False, help='flag to enable multi-task problem') |
|
|
207 |
parser.add_argument('--task', type=str, choices=['cardiac-grade','cardiac-mtl']) |
|
|
208 |
|
|
|
209 |
|
|
|
210 |
args = parser.parse_args() |
|
|
211 |
device=torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
212 |
|
|
|
213 |
def seed_torch(seed=7): |
|
|
214 |
import random |
|
|
215 |
random.seed(seed) |
|
|
216 |
os.environ['PYTHONHASHSEED'] = str(seed) |
|
|
217 |
np.random.seed(seed) |
|
|
218 |
torch.manual_seed(seed) |
|
|
219 |
if device.type == 'cuda': |
|
|
220 |
torch.cuda.manual_seed(seed) |
|
|
221 |
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. |
|
|
222 |
torch.backends.cudnn.benchmark = False |
|
|
223 |
torch.backends.cudnn.deterministic = True |
|
|
224 |
|
|
|
225 |
seed_torch(args.seed) |
|
|
226 |
|
|
|
227 |
encoding_size = 1024 |
|
|
228 |
settings = {'num_splits': args.k, |
|
|
229 |
'k_start': args.k_start, |
|
|
230 |
'k_end': args.k_end, |
|
|
231 |
'task': args.task, |
|
|
232 |
'max_epochs': args.max_epochs, |
|
|
233 |
'results_dir': args.results_dir, |
|
|
234 |
'lr': args.lr, |
|
|
235 |
'experiment': args.exp_code, |
|
|
236 |
'reg': args.reg, |
|
|
237 |
'label_frac': args.label_frac, |
|
|
238 |
'inst_loss': args.inst_loss, |
|
|
239 |
'bag_loss': args.bag_loss, |
|
|
240 |
'bag_weight': args.bag_weight, |
|
|
241 |
'seed': args.seed, |
|
|
242 |
'model_type': args.model_type, |
|
|
243 |
'model_size': args.model_size, |
|
|
244 |
"use_drop_out": args.drop_out, |
|
|
245 |
'weighted_sample': args.weighted_sample, |
|
|
246 |
'opt': args.opt} |
|
|
247 |
|
|
|
248 |
|
|
|
249 |
print('\nLoad Dataset') |
|
|
250 |
if args.task == 'cardiac-grade': |
|
|
251 |
args.n_classes=2 |
|
|
252 |
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/CardiacDummy_Grade.csv', |
|
|
253 |
data_dir= os.path.join(args.data_root_dir, 'features'), |
|
|
254 |
shuffle = False, |
|
|
255 |
seed = args.seed, |
|
|
256 |
print_info = True, |
|
|
257 |
label_dict = {'low':0, 'high':1}, |
|
|
258 |
label_cols=['label_grade'], |
|
|
259 |
patient_strat=False, |
|
|
260 |
ignore=[]) |
|
|
261 |
|
|
|
262 |
|
|
|
263 |
elif args.task == 'cardiac-mtl': |
|
|
264 |
args.n_classes=[2,2,2] |
|
|
265 |
dataset = Generic_MIL_MTL_Dataset(csv_path = 'dataset_csv/CardiacDummy_MTL.csv', |
|
|
266 |
data_dir= os.path.join(args.data_root_dir, 'features'), |
|
|
267 |
shuffle = False, |
|
|
268 |
seed = args.seed, |
|
|
269 |
print_info = True, |
|
|
270 |
label_dicts = [{'no_cell':0, 'cell':1}, |
|
|
271 |
{'no_amr':0, 'amr':1}, |
|
|
272 |
{'no_quilty':0, 'quilty':1}], |
|
|
273 |
label_cols=['label_cell','label_amr','label_quilty'], |
|
|
274 |
patient_strat=False, |
|
|
275 |
ignore=[]) |
|
|
276 |
|
|
|
277 |
|
|
|
278 |
else: |
|
|
279 |
raise NotImplementedError |
|
|
280 |
|
|
|
281 |
if not os.path.isdir(args.results_dir): |
|
|
282 |
os.mkdir(args.results_dir) |
|
|
283 |
|
|
|
284 |
args.results_dir = os.path.join(args.results_dir, str(args.exp_code) + '_s{}'.format(args.seed)) |
|
|
285 |
if not os.path.isdir(args.results_dir): |
|
|
286 |
os.mkdir(args.results_dir) |
|
|
287 |
|
|
|
288 |
if args.split_dir is None: |
|
|
289 |
args.split_dir = os.path.join('splits', args.task+'_{}'.format(int(args.label_frac*100))) |
|
|
290 |
|
|
|
291 |
else: |
|
|
292 |
args.split_dir = os.path.join('splits', args.split_dir) |
|
|
293 |
assert os.path.isdir(args.split_dir) |
|
|
294 |
|
|
|
295 |
settings.update({'split_dir': args.split_dir}) |
|
|
296 |
|
|
|
297 |
|
|
|
298 |
with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f: |
|
|
299 |
print(settings, file=f) |
|
|
300 |
f.close() |
|
|
301 |
|
|
|
302 |
print("################# Settings ###################") |
|
|
303 |
for key, val in settings.items(): |
|
|
304 |
print("{}: {}".format(key, val)) |
|
|
305 |
|
|
|
306 |
if __name__ == "__main__": |
|
|
307 |
if args.mtl: |
|
|
308 |
results = main_mtl(args) |
|
|
309 |
else: |
|
|
310 |
results = main_grade(args) |
|
|
311 |
|
|
|
312 |
print("finished!") |
|
|
313 |
print("end script") |