|
a |
|
b/eval.py |
|
|
1 |
from __future__ import print_function |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
|
|
|
5 |
import argparse |
|
|
6 |
import torch |
|
|
7 |
import torch.nn as nn |
|
|
8 |
import pdb |
|
|
9 |
import os |
|
|
10 |
import pandas as pd |
|
|
11 |
from utils.utils import * |
|
|
12 |
from math import floor |
|
|
13 |
import matplotlib.pyplot as plt |
|
|
14 |
from datasets.dataset_generic import Generic_WSI_Classification_Dataset, Generic_MIL_Dataset |
|
|
15 |
#, save_splits |
|
|
16 |
from datasets.dataset_mtl import Generic_MIL_MTL_Dataset |
|
|
17 |
#, save_splits |
|
|
18 |
import h5py |
|
|
19 |
from utils.eval_utils import eval |
|
|
20 |
from utils.eval_utils_mtl import eval as eval_mtl |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
# Training settings |
|
|
24 |
parser = argparse.ArgumentParser(description='CLAM Evaluation Script') |
|
|
25 |
parser.add_argument('--data_root_dir', type=str, default='/media/fedshyvana/ssd1', |
|
|
26 |
help='data directory') |
|
|
27 |
parser.add_argument('--results_dir', type=str, default='./results', |
|
|
28 |
help='relative path to results folder, i.e. '+ |
|
|
29 |
'the directory containing models_exp_code relative to project root (default: ./results)') |
|
|
30 |
parser.add_argument('--save_exp_code', type=str, default=None, |
|
|
31 |
help='experiment code to save eval results') |
|
|
32 |
parser.add_argument('--models_exp_code', type=str, default=None, |
|
|
33 |
help='experiment code to load trained models (directory under results_dir containing model checkpoints') |
|
|
34 |
parser.add_argument('--splits_dir', type=str, default=None, |
|
|
35 |
help='splits directory, if using custom splits other than what matches the task (default: None)') |
|
|
36 |
parser.add_argument('--model_size', type=str, choices=['small', 'big'], default='big', |
|
|
37 |
help='size of model (default: big)') |
|
|
38 |
parser.add_argument('--model_type', type=str, choices=['clam', 'mil', 'attention_mil', 'clam_simple','histogram_mil'], default='attention_mil', |
|
|
39 |
help='type of model (default: attention_mil)') |
|
|
40 |
parser.add_argument('--drop_out', action='store_true', default=False, |
|
|
41 |
help='whether model uses dropout') |
|
|
42 |
parser.add_argument('--calc_features', action='store_true', default=False, |
|
|
43 |
help='calculate features for pca/tsne') |
|
|
44 |
parser.add_argument('--k', type=int, default=1, help='number of folds (default: 10)') |
|
|
45 |
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)') |
|
|
46 |
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)') |
|
|
47 |
parser.add_argument('--fold', type=int, default=-1, help='single fold to evaluate') |
|
|
48 |
parser.add_argument('--micro_average', action='store_true', default=False, |
|
|
49 |
help='use micro_average instead of macro_avearge for multiclass AUC') |
|
|
50 |
parser.add_argument('--mtl', action='store_true', default=False, help='flag to enable multi-task problem') |
|
|
51 |
parser.add_argument('--patient_level', action='store_true', default=False, help='To enable computing scores at the patient-level. I.e. all patients slides are treated as a single bag with a single label') |
|
|
52 |
parser.add_argument('--split', type=str, choices=['train', 'val', 'test', 'all'], default='test') |
|
|
53 |
parser.add_argument('--task', type=str, |
|
|
54 |
choices=['cardiac-grade','cardiac-mtl']) |
|
|
55 |
|
|
|
56 |
args = parser.parse_args() |
|
|
57 |
device=torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
58 |
encoding_size = 1024 |
|
|
59 |
|
|
|
60 |
args.save_dir = os.path.join('./eval_results', 'EVAL_' + str(args.save_exp_code)) |
|
|
61 |
args.models_dir = os.path.join(args.results_dir, str(args.models_exp_code)) |
|
|
62 |
|
|
|
63 |
os.makedirs(args.save_dir, exist_ok=True) |
|
|
64 |
os.makedirs(os.path.join(args.save_dir, 'attention_scores'), exist_ok=True) |
|
|
65 |
|
|
|
66 |
if args.splits_dir is None: |
|
|
67 |
args.splits_dir = args.models_dir |
|
|
68 |
|
|
|
69 |
assert os.path.isdir(args.models_dir) |
|
|
70 |
assert os.path.isdir(args.splits_dir) |
|
|
71 |
|
|
|
72 |
settings = {'task': args.task, |
|
|
73 |
'split': args.split, |
|
|
74 |
'save_dir': args.save_dir, |
|
|
75 |
'models_dir': args.models_dir, |
|
|
76 |
'model_type': args.model_type, |
|
|
77 |
'drop_out': args.drop_out, |
|
|
78 |
'model_size': args.model_size, |
|
|
79 |
'micro_average': args.micro_average} |
|
|
80 |
|
|
|
81 |
with open(args.save_dir + '/eval_experiment_{}.txt'.format(args.save_exp_code), 'w') as f: |
|
|
82 |
print(settings, file=f) |
|
|
83 |
f.close() |
|
|
84 |
|
|
|
85 |
print(settings) |
|
|
86 |
|
|
|
87 |
if args.task == 'cardiac-grade': |
|
|
88 |
args.n_classes=2 |
|
|
89 |
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/CardiacDummy_Grade.csv', |
|
|
90 |
data_dir= os.path.join(args.data_root_dir, 'features'), |
|
|
91 |
shuffle = False, |
|
|
92 |
print_info = True, |
|
|
93 |
label_dict = {'low':0, 'high':1}, |
|
|
94 |
patient_strat= False, |
|
|
95 |
ignore=[], |
|
|
96 |
patient_level = args.patient_level) |
|
|
97 |
|
|
|
98 |
|
|
|
99 |
elif args.task == 'cardiac-mtl': |
|
|
100 |
args.n_classes = [2,2,2] |
|
|
101 |
dataset = Generic_MIL_MTL_Dataset(csv_path = 'dataset_csv/CardiacDummy_MTL.csv', |
|
|
102 |
data_dir= os.path.join(args.data_root_dir, 'features'), |
|
|
103 |
shuffle = False, |
|
|
104 |
print_info = True, |
|
|
105 |
label_dicts = [{'no_cell':0, 'cell':1}, |
|
|
106 |
{'no_amr':0, 'amr':1}, |
|
|
107 |
{'no_quilty':0, 'quilty':1}], |
|
|
108 |
label_cols=['label_cell','label_amr','label_quilty'], |
|
|
109 |
patient_strat= False, |
|
|
110 |
ignore=[], |
|
|
111 |
patient_level = args.patient_level) |
|
|
112 |
|
|
|
113 |
|
|
|
114 |
elif os.path.isdir(args.task): |
|
|
115 |
print('reading directory for fast inference') |
|
|
116 |
|
|
|
117 |
if args.k_start == -1: |
|
|
118 |
start = 0 |
|
|
119 |
else: |
|
|
120 |
start = args.k_start |
|
|
121 |
if args.k_end == -1: |
|
|
122 |
end = args.k |
|
|
123 |
else: |
|
|
124 |
end = args.k_end |
|
|
125 |
|
|
|
126 |
if args.fold == -1: |
|
|
127 |
folds = range(start, end) |
|
|
128 |
else: |
|
|
129 |
folds = range(args.fold, args.fold+1) |
|
|
130 |
ckpt_paths = [os.path.join(args.models_dir, 's_{}_checkpoint.pt'.format(fold)) for fold in folds] |
|
|
131 |
datasets_id = {'train': 0, 'val': 1, 'test': 2, 'all': -1} |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
def main(args): |
|
|
138 |
all_auc = [] |
|
|
139 |
all_acc = [] |
|
|
140 |
all_aucs = [] |
|
|
141 |
for ckpt_idx in range(len(ckpt_paths)): |
|
|
142 |
if datasets_id[args.split] < 0: |
|
|
143 |
split_dataset = dataset |
|
|
144 |
else: |
|
|
145 |
csv_path = '{}/splits_{}.csv'.format(args.splits_dir, folds[ckpt_idx]) |
|
|
146 |
datasets = dataset.return_splits(from_id=False, csv_path=csv_path) |
|
|
147 |
split_dataset = datasets[datasets_id[args.split]] |
|
|
148 |
|
|
|
149 |
model, patient_results, test_error, auc, aucs, df = eval(split_dataset, args, ckpt_paths[ckpt_idx]) |
|
|
150 |
all_auc.append(auc) |
|
|
151 |
all_acc.append(1-test_error) |
|
|
152 |
if len(aucs) > 0: |
|
|
153 |
all_aucs.append(aucs) |
|
|
154 |
df.to_csv(os.path.join(args.save_dir, 'fold_{}.csv'.format(folds[ckpt_idx])), index=False) |
|
|
155 |
|
|
|
156 |
if args.calc_features: |
|
|
157 |
compute_features(split_dataset, args, ckpt_paths[ckpt_idx], args.save_dir, model=model) |
|
|
158 |
|
|
|
159 |
df_dict = {'folds': folds, 'test_auc': all_auc, 'test_acc': all_acc} |
|
|
160 |
|
|
|
161 |
if args.n_classes > 2: |
|
|
162 |
all_aucs = np.vstack(all_aucs) |
|
|
163 |
for i in range(args.n_classes): |
|
|
164 |
df_dict.update({'class_{}_ovr_auc'.format(i):all_aucs[:,i]}) |
|
|
165 |
|
|
|
166 |
final_df = pd.DataFrame(df_dict) |
|
|
167 |
if len(folds) != args.k: |
|
|
168 |
save_name = 'summary_partial_{}_{}.csv'.format(folds[0], folds[-1]) |
|
|
169 |
else: |
|
|
170 |
save_name = 'summary.csv' |
|
|
171 |
final_df.to_csv(os.path.join(args.save_dir, save_name)) |
|
|
172 |
|
|
|
173 |
|
|
|
174 |
|
|
|
175 |
|
|
|
176 |
def main_mtl(args): |
|
|
177 |
all_task1_auc = [] |
|
|
178 |
all_task1_acc = [] |
|
|
179 |
all_task2_auc = [] |
|
|
180 |
all_task2_acc = [] |
|
|
181 |
all_task3_auc = [] |
|
|
182 |
all_task3_acc = [] |
|
|
183 |
|
|
|
184 |
for ckpt_idx in range(len(ckpt_paths)): |
|
|
185 |
if datasets_id[args.split] < 0: |
|
|
186 |
split_dataset = dataset |
|
|
187 |
else: |
|
|
188 |
csv_path = '{}/splits_{}.csv'.format(args.splits_dir, folds[ckpt_idx]) |
|
|
189 |
datasets = dataset.return_splits(from_id=False, csv_path=csv_path) |
|
|
190 |
split_dataset = datasets[datasets_id[args.split]] |
|
|
191 |
|
|
|
192 |
model, results_dict = eval_mtl(split_dataset, args, ckpt_paths[ckpt_idx]) |
|
|
193 |
|
|
|
194 |
all_task1_auc.append(results_dict['auc_task1']) |
|
|
195 |
all_task1_acc.append(1-results_dict['test_error_task1']) |
|
|
196 |
all_task2_auc.append(results_dict['auc_task2']) |
|
|
197 |
all_task2_acc.append(1-results_dict['test_error_task2']) |
|
|
198 |
all_task3_auc.append(results_dict['auc_task3']) |
|
|
199 |
all_task3_acc.append(1-results_dict['test_error_task3']) |
|
|
200 |
|
|
|
201 |
df = results_dict['df'] |
|
|
202 |
df.to_csv(os.path.join(args.save_dir, 'fold_{}.csv'.format(folds[ckpt_idx])), index=False) |
|
|
203 |
|
|
|
204 |
if args.calc_features: |
|
|
205 |
compute_features(split_dataset, args, ckpt_paths[ckpt_idx], args.save_dir, model=model) |
|
|
206 |
|
|
|
207 |
df_dict = {'folds': folds, |
|
|
208 |
'task1_test_auc': all_task1_auc, 'task1_test_acc': all_task1_acc, |
|
|
209 |
'task2_test_auc': all_task2_auc, 'task2_test_acc': all_task2_acc, |
|
|
210 |
'task3_test_auc': all_task3_auc, 'task3_test_acc': all_task3_acc} |
|
|
211 |
|
|
|
212 |
|
|
|
213 |
final_df = pd.DataFrame(df_dict) |
|
|
214 |
if len(folds) != args.k: |
|
|
215 |
save_name = 'summary_partial_{}_{}.csv'.format(folds[0], folds[-1]) |
|
|
216 |
else: |
|
|
217 |
save_name = 'summary.csv' |
|
|
218 |
final_df.to_csv(os.path.join(args.save_dir, save_name)) |
|
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
|
222 |
|
|
|
223 |
|
|
|
224 |
if __name__ == "__main__": |
|
|
225 |
if args.mtl: |
|
|
226 |
main_mtl(args) |
|
|
227 |
else: |
|
|
228 |
main(args) |
|
|
229 |
|
|
|
230 |
print("finished!") |
|
|
231 |
print("end script") |