98 lines (97 with data), 2.8 kB
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Survival Regression Model code"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook describes code for the Cox Proportional Hazards regression used for the conventional parameter model in our study. We define a simple function that accepts as arguments the input data (predictor variables and survival outcomes) and a training parameter.\n",
"Below we describe each section of the code:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Import required libraries:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np, pandas as pd\n",
"import os, sys, time, pickle, copy, h5py\n",
"import lifelines.utils\n",
"from lifelines import CoxPHFitter"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define function:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def coxreg_single_run(xtr, ytr, penalty):\n",
" df_tr = pd.DataFrame(np.concatenate((ytr, xtr),axis=1))\n",
" df_tr.columns = ['status','time'] + ['X'+str(i+1) for i in range(xtr.shape[1])]\n",
" cph = CoxPHFitter(penalizer=penalty)\n",
" cph.fit(df_tr, duration_col='time', event_col='status')\n",
" return cph"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Function arguments:\n",
"- `xtr` : $n \\times p$ matrix of predictor variables, where $n$ is sample size and $p$ is number of predictor variables. \n",
"- `ytr` : $n \\times 2$ matrix of survival outcomes, where first column is censoring status and second is survival/censoring time\n",
"- `penalty` : To control for high correlations among the variables, L2-norm regularization is used to restrict the size of the coefficient estimates, which improves their stability. The `penalty` coefficient controls the strength of the L2-norm regularization\n",
"\n",
"Function output:\n",
"- A `CoxPHFitter()` object which stores the model structure, regression coefficient estimates, etc. This object can be used to make predictions on new (test/validation) data"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}