|
a |
|
b/inputdata_setup.py |
|
|
1 |
import os, sys |
|
|
2 |
import numpy as np |
|
|
3 |
import pandas as pd |
|
|
4 |
import fnmatch |
|
|
5 |
import pickle |
|
|
6 |
|
|
|
7 |
|
|
|
8 |
def all_files_exist(flist): |
|
|
9 |
numfiles = len(flist) |
|
|
10 |
allexist = True |
|
|
11 |
co = 0 |
|
|
12 |
while allexist and co < numfiles: |
|
|
13 |
allexist = os.path.isfile(flist[co]) |
|
|
14 |
co += 1 |
|
|
15 |
return allexist |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
def file_len(fname): |
|
|
19 |
if os.path.isfile(fname) and os.path.getsize(fname)>0: |
|
|
20 |
with open(fname) as f: |
|
|
21 |
for i, l in enumerate(f): |
|
|
22 |
pass |
|
|
23 |
return i + 1 |
|
|
24 |
else: |
|
|
25 |
print('Failed to read {}!'.format(fname)) |
|
|
26 |
return -1 |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
try: |
|
|
30 |
stubdir = sys.argv[1] |
|
|
31 |
print('Reading mesh motion data from directory {}....'.format(stubdir)) |
|
|
32 |
except: |
|
|
33 |
print('Please pass name of directory containing segmented data...') |
|
|
34 |
|
|
|
35 |
|
|
|
36 |
mpointsfile = 'matchedpointsnew.txt' |
|
|
37 |
pim2 = 'subjnames.txt' |
|
|
38 |
outcomefile = os.path.join(stubdir,'surv_outcomes.csv') |
|
|
39 |
stepsuccess = [True for _ in range(3)] |
|
|
40 |
|
|
|
41 |
|
|
|
42 |
# Read mpointsfile |
|
|
43 |
try: |
|
|
44 |
mpoints = np.loadtxt(os.path.join(stubdir,mpointsfile), dtype=int) |
|
|
45 |
except: |
|
|
46 |
stepsuccess[0] = False |
|
|
47 |
print('{} read failed!'.format(mpointsfile)) |
|
|
48 |
|
|
|
49 |
# Read list of subjects |
|
|
50 |
try: |
|
|
51 |
with open(os.path.join(stubdir,pim2)) as f: IDlist = [lin.strip('\n') for lin in f.readlines() if len(lin)>1] |
|
|
52 |
except: |
|
|
53 |
stepsuccess[1] = False |
|
|
54 |
print('{} read failed!'.format(pim2)) |
|
|
55 |
|
|
|
56 |
# Find number of vertices |
|
|
57 |
if stepsuccess[1]: |
|
|
58 |
try: |
|
|
59 |
meshtxtfile = os.path.join(stubdir,IDlist[0],'motion/RV_fr00.txt') |
|
|
60 |
num_vertx = file_len(meshtxtfile) |
|
|
61 |
if num_vertx <= 0: |
|
|
62 |
stepsuccess[2] = False |
|
|
63 |
print('There was a problem reading {} in order to determine number of vertices in 3D meshes!'.format(meshtxtfile)) |
|
|
64 |
except: |
|
|
65 |
stepsuccess[2] = False |
|
|
66 |
print('Failed to read {} in order to determine number of vertices in 3D meshes!'.format(meshtxtfile)) |
|
|
67 |
|
|
|
68 |
|
|
|
69 |
validIDs = [False] |
|
|
70 |
numframes = 20 |
|
|
71 |
if all(stepsuccess): |
|
|
72 |
print('\n\n------------------------------------------') |
|
|
73 |
print('Reading mesh motion data from directory {}...'.format(stubdir)) |
|
|
74 |
print('Subject IDs will be read from file {}...'.format(pim2)) |
|
|
75 |
print('Expected number of vertices per mesh = {0}, of which {1} will be extracted'.format(num_vertx, mpoints.shape[0])) |
|
|
76 |
print('Outcome data will be read from file {}...'.format(outcomefile)) |
|
|
77 |
print('------------------------------------------\n\n\n') |
|
|
78 |
if os.path.exists(stubdir): |
|
|
79 |
if len(IDlist)>0: |
|
|
80 |
validIDs = [False for _ in range(len(IDlist))] |
|
|
81 |
X_all = np.zeros(shape=(len(IDlist),(numframes-1),mpoints.shape[0],3), dtype=float) |
|
|
82 |
for counter,ID in enumerate(IDlist): |
|
|
83 |
if os.path.exists(os.path.join(stubdir,ID)): |
|
|
84 |
if os.path.exists(os.path.join(stubdir,ID,'motion')): |
|
|
85 |
frames_file_list = [os.path.join(stubdir, ID, 'motion/RV_fr' + '{:0>2}'.format(b) + '.txt') for b in range(numframes)] |
|
|
86 |
if all_files_exist(frames_file_list): |
|
|
87 |
nframes = len(fnmatch.filter(os.listdir(os.path.join(stubdir , ID , 'motion')), 'RV_fr*.txt')) |
|
|
88 |
if nframes == numframes: |
|
|
89 |
if np.sum([file_len(frames_file_list[i]) == num_vertx for i in range(numframes)]) == numframes: |
|
|
90 |
vs = [True for _ in range(numframes)] |
|
|
91 |
try: |
|
|
92 |
coords_fr0 = np.loadtxt(frames_file_list[0])[mpoints[:,1]] |
|
|
93 |
except: |
|
|
94 |
print('Error! could not read file {} !'.format(frames_file_list[0])) |
|
|
95 |
vs[0]=False |
|
|
96 |
if vs[0]: |
|
|
97 |
for j in range(1, numframes): |
|
|
98 |
try: |
|
|
99 |
coords_frj = np.loadtxt(frames_file_list[j])[mpoints[:,1]] |
|
|
100 |
except: |
|
|
101 |
print('Error! could not read file {} !'.format(frames_file_list[j])) |
|
|
102 |
vs[j]=False |
|
|
103 |
if vs[j]: |
|
|
104 |
X_all[counter, j-1, :, :] = coords_frj - coords_fr0 |
|
|
105 |
else: |
|
|
106 |
break |
|
|
107 |
if np.all(vs): |
|
|
108 |
validIDs[counter] = True |
|
|
109 |
print('Successfully read motion data for ID {}'.format(ID)) |
|
|
110 |
# else: print(ID + ' RV files do not have ' + str(num_vertx) + ' vertices') |
|
|
111 |
else: |
|
|
112 |
print('{0} : wrong # of vertices, expected {1} for all {2} frames but got {3}'.format(ID,num_vertx,numframes,str([file_len(frames_file_list[i]) for i in range(numframes)]))) |
|
|
113 |
else: |
|
|
114 |
print('{0} : RV files exist but not {1} in number. Skipping to next ID....'.format(ID,numframes)) |
|
|
115 |
else: |
|
|
116 |
print(ID + ' : folder exists but not all RV files exist. Skipping to next ID....') |
|
|
117 |
else: |
|
|
118 |
print('There is no motion folder under directory {} !'.format(os.path.join(stubdir,ID))) |
|
|
119 |
else: |
|
|
120 |
print('{0} folder does not exist under directory {1}'.format(ID,stubdir)) |
|
|
121 |
else: |
|
|
122 |
print('No IDs found in predinput_master2.txt !') |
|
|
123 |
else: |
|
|
124 |
print('directory meant to contain IDs is not valid!' ) |
|
|
125 |
else: pass |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
if any(validIDs): |
|
|
129 |
numvalids = np.sum(validIDs) |
|
|
130 |
print('{} IDs with valid mesh motion data were found'.format(numvalids)) |
|
|
131 |
X = X_all[validIDs] |
|
|
132 |
else: print('No valid mesh motion data could be read!') |
|
|
133 |
|
|
|
134 |
|
|
|
135 |
# Processing outcome data |
|
|
136 |
|
|
|
137 |
# Read outcome master file - Column 1: ID, Column 2: censoring status, Column 3: time to event/censoring |
|
|
138 |
# Tests of outcome file: |
|
|
139 |
# number of columns is 3 |
|
|
140 |
# columns ordered correctly - ID, status, time |
|
|
141 |
# columns contain correct data (ID is string, status = 0 or 1, time > 0) |
|
|
142 |
if any(validIDs): |
|
|
143 |
oreadable = True |
|
|
144 |
ofmtcorr1 = True |
|
|
145 |
if os.path.exists(outcomefile): |
|
|
146 |
try: |
|
|
147 |
outcome_df = pd.read_csv(outcomefile) |
|
|
148 |
except: |
|
|
149 |
print('Error in reading outcome file {} !'.format(outcomefile)) |
|
|
150 |
oreadable = False |
|
|
151 |
if oreadable: |
|
|
152 |
print('Outcome file {0} read: {1} rows and {2} columns...'.format(outcomefile, outcome_df.shape[0], outcome_df.shape[1])) |
|
|
153 |
if len(outcome_df.columns) != 3: |
|
|
154 |
print('Wrong number of columns in outcome file {} ! Expected 3 columns'.format(outcomefile)) |
|
|
155 |
else: |
|
|
156 |
outcome_df.columns = ['ID','status','time'] |
|
|
157 |
try: |
|
|
158 |
ocorrfmt = np.all([ i and j for (i,j) in zip([l in [0,1] for l in list(outcome_df.status)], [k>=0 for k in list(outcome_df.time)])]) |
|
|
159 |
except: |
|
|
160 |
ofmtcorr1 = False |
|
|
161 |
ocorrfmt = False |
|
|
162 |
if not (ofmtcorr1 and ocorrfmt): |
|
|
163 |
print('status and/or time columns in {} are incorrectly formatted!'.format(outcomefile)) |
|
|
164 |
if ofmtcorr1==True and ocorrfmt == False: |
|
|
165 |
aw = np.argwhere([ not(i and j) for (i,j) in zip([l in [0,1] for l in list(outcome_df.status)], [k>=0 for k in list(outcome_df.time)])]) |
|
|
166 |
if aw.shape[0] > 0: |
|
|
167 |
print('{} {rw} {w} problematic: '.format(aw.shape[0],rw='rows' if aw.shape[0]>1 else 'row',w='were' if aw.shape[0]>1 else 'was')) |
|
|
168 |
print(outcome_df.iloc[list(aw[:,0])]) |
|
|
169 |
else: |
|
|
170 |
if any(validIDs): |
|
|
171 |
print('matching mesh motion data IDs to outcome data IDs....') |
|
|
172 |
IDlist_valids = list(np.array(IDlist)[validIDs]) |
|
|
173 |
#IDlist_woutc = [ii for ii in IDlist_valids if ii in list(outcome_df.ID)] |
|
|
174 |
IDlist_woutc = list(set(list(outcome_df.ID)).intersection(set(IDlist_valids))) |
|
|
175 |
if len(IDlist_woutc)==0: |
|
|
176 |
print('None of the IDs from the mesh motion data were found in outcome file {}'.format(outcomefile)) |
|
|
177 |
else: |
|
|
178 |
print('{1} of {2} valid IDs from mesh motion data were found in outcome file {0}'.format(outcomefile, len(IDlist_woutc), len(IDlist_valids))) |
|
|
179 |
if len(IDlist_woutc) < len(IDlist_valids): |
|
|
180 |
print('The following IDs from the mesh motion data were not found in outcome file {} :'.format(outcomefile)) |
|
|
181 |
print([ii for ii in IDlist_valids if ii not in list(outcome_df.ID)]) |
|
|
182 |
y = outcome_df[(outcome_df['ID'].isin(IDlist_woutc))] |
|
|
183 |
matchmask = [(u in IDlist_woutc) for u in IDlist_valids] |
|
|
184 |
Xout = X[matchmask] |
|
|
185 |
xshp = Xout.shape |
|
|
186 |
xymatch = (y.shape[0]==xshp[0]) |
|
|
187 |
assert xymatch, 'ERROR: mesh motion (x) data has {1} rows while outcome (y) data has {0} rows'.format(y.shape[0], xshp[0]) |
|
|
188 |
if xymatch: |
|
|
189 |
Xfin = Xout.reshape(xshp[:2]+(np.prod(xshp[2:]),)).reshape((xshp[0],-1)) |
|
|
190 |
plist = [Xfin,np.array(y[['status','time']]),list(y.ID)] |
|
|
191 |
pklname = 'inputdata_DL' + '.pkl' |
|
|
192 |
pklpath = os.path.join(os.getcwd(),'data',pklname) |
|
|
193 |
with open(pklpath, 'wb') as f: pickle.dump(obj=plist, file=f) |
|
|
194 |
print('Mesh motion and corresponding survival data for {0} subjects has been saved in {1}'.format(xshp[0],pklpath)) |
|
|
195 |
|
|
|
196 |
else: |
|
|
197 |
print('Outcome file {} does not exist! Outcome data cannot be read!'.format(outcomefile)) |