[2cc208]: / demo / scripts / bootstrap_nn.py

Download this file

226 lines (186 with data), 8.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
@author: gbello & lisuru6
How to run the code
python demo_validateDL.py -c /path-to-conf
Default conf uses demo/scripts/default_validate_DL.conf
"""
import json
import shutil
from datetime import timedelta
import pickle
import numpy as np
from pathlib import Path
from argparse import ArgumentParser
from lifelines.utils import concordance_index
from survival4D.nn import hypersearch_nn
from survival4D.nn import train_nn
from survival4D.config import NNExperimentConfig, HypersearchConfig, ModelConfig
from matplotlib import pyplot as plt
DEFAULT_CONF_PATH = Path(__file__).parent.joinpath("default_nn.conf")
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"-c", "--conf-path", dest="conf_path", type=str, default=None, help="Conf path."
)
return parser.parse_args()
def main():
args = parse_args()
if args.conf_path is None:
conf_path = DEFAULT_CONF_PATH
else:
conf_path = Path(args.conf_path)
exp_config = NNExperimentConfig.from_conf(conf_path)
exp_config.output_dir.mkdir(parents=True, exist_ok=True)
hypersearch_config = HypersearchConfig.from_conf(conf_path)
model_config = ModelConfig.from_conf(conf_path)
shutil.copy(str(conf_path), str(exp_config.output_dir.joinpath("nn.conf")))
# import input data: i_full=list of patient IDs, y_full=censoring status and survival times for patients,
# x_full=input data for patients (i.e. motion descriptors [11,514-element vector])
with open(str(exp_config.data_path), 'rb') as f:
c3 = pickle.load(f)
x_full = c3[0]
y_full = c3[1]
del c3
# Initialize lists to store predictions
preds_bootfull = []
inds_inbag = []
Cb_opts = []
# STEP 1
# (1a) find optimal hyperparameters
print("Step 1a")
opars, osummary = hypersearch_nn(
x_data=x_full,
y_data=y_full,
method=exp_config.search_method,
nfolds=exp_config.n_folds,
nevals=exp_config.n_evals,
batch_size=exp_config.batch_size,
num_epochs=exp_config.n_epochs,
backend=exp_config.backend,
model_kwargs=model_config.to_dict(),
**hypersearch_config.to_dict(),
)
# save opars
print("Step b")
# (1b) using optimal hyperparameters, train a model on full sample
olog = train_nn(
backend=exp_config.backend,
xtr=x_full,
ytr=y_full,
batch_size=exp_config.batch_size,
n_epochs=exp_config.n_epochs,
**model_config.to_dict(),
**opars,
)
# (1c) Compute Harrell's Concordance index
predfull = olog.predict(x_full, batch_size=1)[1]
C_app = concordance_index(y_full[:, 1], -predfull, y_full[:, 0])
save_params(opars, osummary, "step_1a", exp_config.output_dir, c_app=C_app)
print('Apparent concordance index = {0:.4f}'.format(C_app))
# BOOTSTRAP SAMPLING
# define useful variables
nsmp = len(x_full)
rowids = [_ for _ in range(nsmp)]
B = exp_config.n_bootstraps
plot_c_opts = []
plot_c_adjs = []
plot_bs_samples = []
plot_c_adjs_lb = []
plot_c_adjs_up = []
for b in range(B):
print('Current bootstrap sample:', b, 'of', B-1)
print('-------------------------------------')
# STEP 2: Generate a bootstrap sample by doing n random selections with replacement (where n is the sample size)
b_inds = np.random.choice(rowids, size=nsmp, replace=True)
xboot = x_full[b_inds]
yboot = y_full[b_inds]
# (2a) find optimal hyperparameters
print("Step 2a")
bpars, bsummary = hypersearch_nn(
backend=exp_config.backend,
x_data=xboot,
y_data=yboot,
method=exp_config.search_method,
nfolds=exp_config.n_folds,
nevals=exp_config.n_evals,
batch_size=exp_config.batch_size,
num_epochs=exp_config.n_epochs,
model_kwargs=model_config.to_dict(),
**hypersearch_config.to_dict(),
)
# (2b) using optimal hyperparameters, train a model on bootstrap sample
blog = train_nn(
backend=exp_config.backend,
xtr=xboot,
ytr=yboot,
batch_size=exp_config.batch_size,
n_epochs=exp_config.n_epochs,
**model_config.to_dict(),
**bpars
)
# (2c[i]) Using bootstrap-trained model, compute predictions on bootstrap sample.
# Evaluate accuracy of predictions (Harrell's Concordance index)
predboot = blog.predict(xboot, batch_size=1)[1]
Cb_boot = concordance_index(yboot[:, 1], -predboot, yboot[:, 0])
# (2c[ii]) Using bootstrap-trained model, compute predictions on FULL sample.
# Evaluate accuracy of predictions (Harrell's Concordance index)
predbootfull = blog.predict(x_full, batch_size=1)[1]
Cb_full = concordance_index(y_full[:, 1], -predbootfull, y_full[:, 0])
# STEP 3: Compute optimism for bth bootstrap sample, as difference between results from 2c[i] and 2c[ii]
Cb_opt = Cb_boot - Cb_full
# store data on current bootstrap sample (predictions, C-indices)
preds_bootfull.append(predbootfull)
inds_inbag.append(b_inds)
Cb_opts.append(Cb_opt)
print('Current bootstrap sample:', b, 'of', B-1)
print('-------------------------------------')
c_opt, c_adj, c_opt_95confint = compute_bootstrap_adjusted_c_index(C_app, Cb_opts)
print('Optimism bootstrap estimate = {0:.4f}'.format(c_opt))
print('Optimism-adjusted concordance index = {0:.4f}, and 95% CI = {1}'.format(c_adj, c_opt_95confint))
save_params(
bpars, bsummary, "bootstrap_{}".format(b), exp_config.output_dir,
c_opt=c_opt, c_adj=c_adj, c_opt_95confint=c_opt_95confint.tolist(),
cb_boot=Cb_boot, cb_full=Cb_full, cb_opt=Cb_opt, c_app=C_app,
)
# plot c_opt, c_adj with c_app as title
plot_c_opts.append(c_opt)
plot_bs_samples.append(b)
plot_c_adjs.append(c_adj)
plot_c_adjs_lb.append(c_opt_95confint[0])
plot_c_adjs_up.append(c_opt_95confint[1])
plot_c_indices(plot_bs_samples, plot_c_opts, plot_c_adjs, plot_c_adjs_lb, plot_c_adjs_up, C_app, exp_config.output_dir)
# STEP 5
# Compute bootstrap-estimated optimism (mean of optimism estimates across the B bootstrap samples)
c_opt, c_adj, c_opt_95confint = compute_bootstrap_adjusted_c_index(C_app, Cb_opts)
print('Optimism bootstrap estimate = {0:.4f}'.format(c_opt))
print('Optimism-adjusted concordance index = {0:.4f}, and 95% CI = {1}'.format(c_adj, c_opt_95confint))
def save_params(params: dict, search_log, name: str, output_dir: Path, **kwargs):
output_dir.mkdir(parents=True, exist_ok=True)
params["search_log_optimum_c_index"] = search_log.optimum
params["num_evals"] = search_log.stats["num_evals"]
params["time"] = str(timedelta(seconds=search_log.stats["time"]))
params["call_log"] = search_log.call_log
for key in kwargs.keys():
params[key] = kwargs[key]
with open(str(output_dir.joinpath(name + ".json")), "w") as fp:
json.dump(params, fp, indent=4)
def compute_bootstrap_adjusted_c_index(C_app, Cb_opts):
# Compute bootstrap-estimated optimism (mean of optimism estimates across the B bootstrap samples)
C_opt = np.mean(Cb_opts)
# Adjust apparent C using bootstrap-estimated optimism
C_adj = C_app - C_opt
# compute confidence intervals for optimism-adjusted C
C_opt_95confint = np.percentile([C_app - o for o in Cb_opts], q=[2.5, 97.5])
return C_opt, C_adj, C_opt_95confint
def plot_c_indices(bs_samples, c_obts, c_adjs, c_adjs_lb, c_adjst_up, c_app, output_dir: Path):
plt.figure()
plt.title("c_adj, c_app={:.4f}".format(c_app))
plt.fill_between(bs_samples, c_adjs_lb, c_adjst_up, facecolor='red', alpha=0.5, interpolate=True)
plt.plot(bs_samples, c_adjs, 'rx-')
plt.savefig(str(output_dir.joinpath("c_adj.png")))
plt.figure()
plt.title("c_opt, c_app={:.4f}".format(c_app))
plt.plot(bs_samples, c_obts, 'rx-')
plt.savefig(str(output_dir.joinpath("c_obt.png")))
if __name__ == '__main__':
main()