[ab27bc]: / mimicsql / evaluation / process_mimic_db / process_tables.py

Download this file

162 lines (148 with data), 6.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import csv
import shutil
import pandas
import numpy as np
from datetime import datetime
from process_mimic_db.utils import *
def build_demographic_table(data_dir, out_dir, conn):
print('Build demographic_table')
pat_id2name = get_patient_name('process_mimic_db')
pat_info = read_table(data_dir, 'PATIENTS.csv')
adm_info = read_table(data_dir, 'ADMISSIONS.csv')
print('-- Process PATIENTS')
cnt = 0
for itm in pat_info:
cnt += 1
show_progress(cnt, len(pat_info))
itm['NAME'] = pat_id2name[itm['SUBJECT_ID']]
dob = datetime.strptime(itm['DOB'], '%Y-%m-%d %H:%M:%S')
itm['DOB_YEAR'] = str(dob.year)
if len(itm['DOD']) > 0:
dod = datetime.strptime(itm['DOD'], '%Y-%m-%d %H:%M:%S')
itm['DOD_YEAR'] = str(dod.year)
else:
itm['DOD_YEAR'] = ''
pat_dic = {ky['SUBJECT_ID']: ky for ky in pat_info}
print()
print('-- Process ADMISSIONS')
cnt = 0
for itm in adm_info:
cnt += 1
show_progress(cnt, len(adm_info))
# patients.csv
for ss in pat_dic[itm['SUBJECT_ID']]:
if ss == 'ROW_ID' or ss == 'SUBJECT_ID':
continue
itm[ss] = pat_dic[itm['SUBJECT_ID']][ss]
# admissions.csv
admtime = datetime.strptime(itm['ADMITTIME'], '%Y-%m-%d %H:%M:%S')
itm['ADMITYEAR'] = str(admtime.year)
dctime = datetime.strptime(itm['DISCHTIME'], '%Y-%m-%d %H:%M:%S')
itm['DAYS_STAY'] = str((dctime-admtime).days)
itm['AGE'] = str(int(itm['ADMITYEAR'])-int(itm['DOB_YEAR']))
if int(itm['AGE']) > 89:
itm['AGE'] = str(89+int(itm['AGE'])-300)
print()
print('-- write table')
header = [
'SUBJECT_ID',
'HADM_ID',
'NAME',
'MARITAL_STATUS',
'AGE',
'DOB',
'GENDER',
'LANGUAGE',
'RELIGION',
'ADMISSION_TYPE',
'DAYS_STAY',
'INSURANCE',
'ETHNICITY',
'EXPIRE_FLAG',
'ADMISSION_LOCATION',
'DISCHARGE_LOCATION',
'DIAGNOSIS',
'DOD',
'DOB_YEAR',
'DOD_YEAR',
'ADMITTIME',
'DISCHTIME',
'ADMITYEAR'
]
fout = open(os.path.join(out_dir,'DEMOGRAPHIC.csv'), 'w')
fout.write('\"'+'\",\"'.join(header)+'\"\n')
for itm in adm_info:
arr = []
for wd in header:
arr.append(itm[wd])
fout.write('\"'+'\",\"'.join(arr)+'\"\n')
fout.close()
print('-- write sql')
data = pandas.read_csv(
os.path.join(out_dir,'DEMOGRAPHIC.csv'),
dtype={'HADM_ID': str, "DOD_YEAR": float, "SUBJECT_ID": str})
data.to_sql('DEMOGRAPHIC', conn, if_exists='replace', index=False)
def build_diagnoses_table(data_dir, out_dir, conn):
print('Build diagnoses_table')
left = pandas.read_csv(os.path.join(data_dir, 'DIAGNOSES_ICD.csv'), dtype=str)
right = pandas.read_csv(os.path.join(data_dir, 'D_ICD_DIAGNOSES.csv'), dtype=str)
left = left.drop(columns=['ROW_ID', 'SEQ_NUM'])
right = right.drop(columns=['ROW_ID'])
out = pandas.merge(left, right, on='ICD9_CODE')
out = out.sort_values(by='HADM_ID')
print('-- write table')
out.to_csv(os.path.join(out_dir, 'DIAGNOSES.csv'), sep=',', index=False)
print('-- write sql')
out.to_sql('DIAGNOSES', conn, if_exists='replace', index=False)
def build_procedures_table(data_dir, out_dir, conn):
print('Build procedures_table')
left = pandas.read_csv(os.path.join(data_dir, 'PROCEDURES_ICD.csv'), dtype=str)
right = pandas.read_csv(os.path.join(data_dir, 'D_ICD_PROCEDURES.csv'), dtype=str)
left = left.drop(columns=['ROW_ID', 'SEQ_NUM'])
right = right.drop(columns=['ROW_ID'])
out = pandas.merge(left, right, on='ICD9_CODE')
out = out.sort_values(by='HADM_ID')
print('-- write table')
out.to_csv(os.path.join(out_dir, 'PROCEDURES.csv'), sep=',', index=False)
print('-- write sql')
out.to_sql('PROCEDURES', conn, if_exists='replace', index=False)
def build_prescriptions_table(data_dir, out_dir, conn):
print('Build prescriptions_table')
data = pandas.read_csv(os.path.join(data_dir, 'PRESCRIPTIONS.csv'), dtype=str)
data = data.drop(columns=['ROW_ID', 'GSN', 'DRUG_NAME_POE',
'DRUG_NAME_GENERIC', 'NDC', 'PROD_STRENGTH',
'FORM_VAL_DISP', 'FORM_UNIT_DISP',
'STARTDATE', 'ENDDATE'])
data = data.dropna(subset=['DOSE_VAL_RX', 'DOSE_UNIT_RX'])
data['DRUG_DOSE'] = data[['DOSE_VAL_RX', 'DOSE_UNIT_RX']].apply(lambda x: ''.join(x), axis=1)
data = data.drop(columns=['DOSE_VAL_RX', 'DOSE_UNIT_RX'])
print('-- write table')
data.to_csv(os.path.join(out_dir, 'PRESCRIPTIONS.csv'), sep=',', index=False)
print('-- write sql')
data.to_sql('PRESCRIPTIONS', conn, if_exists='replace', index=False)
def build_lab_table(data_dir, out_dir, conn):
print('Build lab_table')
cnt = 0
show_progress(cnt, 4)
left = pandas.read_csv(os.path.join(data_dir, 'LABEVENTS.csv'), dtype=str)
cnt += 1
show_progress(cnt, 4)
right = pandas.read_csv(os.path.join(data_dir, 'D_LABITEMS.csv'), dtype=str)
cnt += 1
show_progress(cnt, 4)
left = left.dropna(subset=['HADM_ID', 'VALUE', 'VALUEUOM'])
left = left.drop(columns=['ROW_ID', 'VALUENUM'])
left['VALUE_UNIT'] = left[['VALUE', 'VALUEUOM']].apply(lambda x: ''.join(x), axis=1)
left = left.drop(columns=['VALUE', 'VALUEUOM'])
right = right.drop(columns=['ROW_ID', 'LOINC_CODE'])
cnt += 1
show_progress(cnt, 4)
out = pandas.merge(left, right, on='ITEMID')
cnt += 1
show_progress(cnt, 4)
print()
print('-- write table')
out.to_csv(os.path.join(out_dir, 'LAB.csv'), sep=',', index=False)
print('-- write sql')
out.to_sql('LAB', conn, if_exists='replace', index=False)