88 lines (87 with data), 1.8 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"import csv\n",
"import pandas\n",
"import sqlite3\n",
"import random\n",
"import json\n",
"import itertools\n",
"\n",
"from utils import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"db_file = 'mimic_db/mimic.db'\n",
"model = query(db_file)\n",
"(db_meta, db_tabs, db_head) = model._load_db(db_file)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"for tb in db_meta:\n",
" for hd in db_meta[tb]:\n",
" mysql = 'select distinct {} from {}'.format(hd, tb)\n",
" myres = model.execute_sql(mysql).fetchall()\n",
" myres = list({k[0]: {} for k in myres if not k[0] == None})\n",
" db_meta[tb][hd] = myres"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# print(db_meta)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"fout = open(\"mimic_db/lookup.json\", \"w\")\n",
"json.dump(db_meta, fout)\n",
"fout.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}