|
a |
|
b/example/cui2vec/cui2vec.py |
|
|
1 |
#!/usr/bin/env python |
|
|
2 |
|
|
|
3 |
"""Demonstrates medical term feature generation from spaCy parsed natural |
|
|
4 |
langauge. |
|
|
5 |
|
|
|
6 |
This example needs the ``zensols.deepnlp`` library, install with:: |
|
|
7 |
|
|
|
8 |
pip install zensols.deepnlp |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
|
|
|
12 |
""" |
|
|
13 |
__author__ = 'Paul Landes' |
|
|
14 |
|
|
|
15 |
from typing import Dict, List, Tuple |
|
|
16 |
from dataclasses import dataclass, field |
|
|
17 |
import logging |
|
|
18 |
from gensim.models.keyedvectors import KeyedVectors |
|
|
19 |
from zensols.cli import CliHarness ; CliHarness.add_sys_path('src/python') |
|
|
20 |
from zensols.cli import ProgramNameConfigurator, ApplicationError |
|
|
21 |
from zensols.mednlp import UTSClient |
|
|
22 |
from zensols.mednlp.cui2vec import Cui2VecEmbedModel |
|
|
23 |
|
|
|
24 |
logger = logging.getLogger(__name__) |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
# the definition of the application class executed from the CLI glue code |
|
|
28 |
@dataclass |
|
|
29 |
class Application(object): |
|
|
30 |
"""Demonstrates access to UTS. |
|
|
31 |
|
|
|
32 |
""" |
|
|
33 |
# tell the application not mistake the fields as an option when generating |
|
|
34 |
# the online help with the -h option |
|
|
35 |
CLI_META = {'option_excludes': {'uts_client', 'cui2vec_embedding'}} |
|
|
36 |
|
|
|
37 |
uts_client: UTSClient = field() |
|
|
38 |
"""Queries UMLS data.""" |
|
|
39 |
|
|
|
40 |
cui2vec_embedding: Cui2VecEmbedModel = field() |
|
|
41 |
"""The cui2vec embedding model.""" |
|
|
42 |
|
|
|
43 |
def __post_init__(self): |
|
|
44 |
# suppress gensim API warnings |
|
|
45 |
import warnings |
|
|
46 |
warnings.filterwarnings( |
|
|
47 |
'ignore', message='invalid value encountered in true_divide') |
|
|
48 |
|
|
|
49 |
@property |
|
|
50 |
def kv(self) -> KeyedVectors: |
|
|
51 |
embedding: Cui2VecEmbedModel = self.cui2vec_embedding |
|
|
52 |
return embedding.keyed_vectors |
|
|
53 |
|
|
|
54 |
def _search_cui(self, term: str) -> str: |
|
|
55 |
kv: KeyedVectors = self.kv |
|
|
56 |
res: List[Dict[str, str]] = self.uts_client.search_term(term) |
|
|
57 |
cui: str = None |
|
|
58 |
for rd in res: |
|
|
59 |
cui = rd['ui'] |
|
|
60 |
if cui in kv: |
|
|
61 |
logger.info(f"found cui: '{term}' -> {cui}") |
|
|
62 |
break |
|
|
63 |
if cui is None: |
|
|
64 |
raise ApplicationError(f'CUI {cui} not found in cui2vec') |
|
|
65 |
return cui |
|
|
66 |
|
|
|
67 |
def similarity(self, term: str = 'heart disease', topn: int = 5): |
|
|
68 |
"""Get the cosine similarity between two CUIs. |
|
|
69 |
|
|
|
70 |
:param term: the medical term |
|
|
71 |
|
|
|
72 |
:param topn: the top N count similarities to return |
|
|
73 |
|
|
|
74 |
""" |
|
|
75 |
kv: KeyedVectors = self.kv |
|
|
76 |
cui: str = self._search_cui(term) |
|
|
77 |
sims_by_word: List[Tuple[str, float]] = kv.similar_by_word(cui, topn) |
|
|
78 |
for rel_cui, proba in sims_by_word: |
|
|
79 |
rel_atom: Dict[str, str] = self.uts_client.get_atoms(rel_cui) |
|
|
80 |
rel_name = rel_atom.get('name', 'Unknown') |
|
|
81 |
logger.info(f'{rel_name} ({rel_cui}): {proba * 100:.2f}%') |
|
|
82 |
|
|
|
83 |
def distance(self, term_a: str, term_b: str) -> float: |
|
|
84 |
"""Get the cosine similarity between two CUIs. |
|
|
85 |
|
|
|
86 |
:param term: the medical term |
|
|
87 |
|
|
|
88 |
""" |
|
|
89 |
kv: KeyedVectors = self.kv |
|
|
90 |
cui_a: str = self._search_cui(term_a) |
|
|
91 |
cui_b: str = self._search_cui(term_b) |
|
|
92 |
cos_dis: float = kv.distance(cui_a, cui_b) |
|
|
93 |
logger.info(f'similarity: {cui_a} <-> {cui_b}: {cos_dis}') |
|
|
94 |
return cos_dis |
|
|
95 |
|
|
|
96 |
|
|
|
97 |
if (__name__ == '__main__'): |
|
|
98 |
CliHarness( |
|
|
99 |
app_config_resource='cui2vec.conf', |
|
|
100 |
app_config_context=ProgramNameConfigurator( |
|
|
101 |
None, default='cui2vec').create_section(), |
|
|
102 |
proto_args='', |
|
|
103 |
proto_factory_kwargs={'reload_pattern': '^cui2vec'}, |
|
|
104 |
).run() |