|
a |
|
b/load_parse.py |
|
|
1 |
#!/usr/bin/python !/usr/bin/env python |
|
|
2 |
# -*- coding: utf-8 -* |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
# Function to extract knowledge from medical text |
|
|
6 |
|
|
|
7 |
import json |
|
|
8 |
import os |
|
|
9 |
import py2neo |
|
|
10 |
import csv |
|
|
11 |
import subprocess |
|
|
12 |
import urllib2 |
|
|
13 |
import requests |
|
|
14 |
import unicodecsv as csv2 |
|
|
15 |
import pandas as pd |
|
|
16 |
from nltk.tokenize import sent_tokenize |
|
|
17 |
from config import settings |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
|
24 |
def mmap_extract(text): |
|
|
25 |
""" |
|
|
26 |
Function-wrapper for metamap binary. Extracts concepts |
|
|
27 |
found in text. |
|
|
28 |
|
|
|
29 |
!!!! REMEMBER TO START THE METAMAP TAGGER AND |
|
|
30 |
WordSense DISAMBIGUATION SERVER !!!! |
|
|
31 |
|
|
|
32 |
Input: |
|
|
33 |
- text: str, |
|
|
34 |
a piece of text or sentence |
|
|
35 |
Output: |
|
|
36 |
- concepts: list, |
|
|
37 |
list of metamap concepts extracted |
|
|
38 |
""" |
|
|
39 |
|
|
|
40 |
# Tokenize into sentences |
|
|
41 |
sents = sent_tokenize(text) |
|
|
42 |
mm = MetaMap.get_instance(settings['load']['path']['metamap']) |
|
|
43 |
concepts, errors = mm.extract_concepts(sents, range(len(sents)), |
|
|
44 |
word_sense_disambiguation=True) |
|
|
45 |
if errors: |
|
|
46 |
print 'Errors with extracting concepts!' |
|
|
47 |
print errors |
|
|
48 |
return concepts |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
def runProcess(exe, working_dir): |
|
|
52 |
""" |
|
|
53 |
Function that opens a command line and runs a command. |
|
|
54 |
Captures the output and returns. |
|
|
55 |
Input: |
|
|
56 |
- exe: str, |
|
|
57 |
string of the command to be run. ! REMEMBER TO ESCAPE CHARS! |
|
|
58 |
- working_dir: str, |
|
|
59 |
directory where the cmd should be executed |
|
|
60 |
Output: |
|
|
61 |
- lines: list, |
|
|
62 |
list of strings generated from the command |
|
|
63 |
""" |
|
|
64 |
|
|
|
65 |
p = subprocess.Popen(exe, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=working_dir, shell=True) |
|
|
66 |
lines = p.stdout.readlines() |
|
|
67 |
return lines |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
def stopw_removal(inp, stop): |
|
|
71 |
""" |
|
|
72 |
Stopwords removal in line of text. |
|
|
73 |
Input: |
|
|
74 |
- inp: str, |
|
|
75 |
string of the text input |
|
|
76 |
- stop: list, |
|
|
77 |
list of stop-words to be removed |
|
|
78 |
""" |
|
|
79 |
|
|
|
80 |
# Final string to be returned |
|
|
81 |
final = '' |
|
|
82 |
for w in inp.lower().split(): |
|
|
83 |
if w not in stop: |
|
|
84 |
final += w + ' ' |
|
|
85 |
# Remove last whitespace that was added ' ' |
|
|
86 |
final = final[:-1] |
|
|
87 |
return final |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
def reverb_wrapper(text, stop=None): |
|
|
91 |
""" |
|
|
92 |
Function-wrapper for ReVerb binary. Extracts relations |
|
|
93 |
found in text. |
|
|
94 |
Input: |
|
|
95 |
- text: str, |
|
|
96 |
a piece of text or sentence |
|
|
97 |
- stop: list, |
|
|
98 |
list of stopwords to remove from the relations |
|
|
99 |
Output: |
|
|
100 |
- total: list, |
|
|
101 |
list of lists. Each inner list contains one relation in the form |
|
|
102 |
[subject, predicate, object] |
|
|
103 |
""" |
|
|
104 |
total = [] |
|
|
105 |
for sent in sent_tokenize(text): |
|
|
106 |
cmd = 'echo "' + sent + '"' "| ./reverb -q | tr '\t' '\n' | cat -n" |
|
|
107 |
reverb_dir = settings['load']['path']['reverb'] |
|
|
108 |
result = runProcess(cmd, reverb_dir) |
|
|
109 |
# Extract relations from reverb output |
|
|
110 |
result = result[-3:] |
|
|
111 |
result = [row.split('\t')[1].strip('\n') for row in result] |
|
|
112 |
# Remove common stopwords from relations |
|
|
113 |
if stop: |
|
|
114 |
result = [stopw_removal(res, stop) for res in result] |
|
|
115 |
total.append(result) |
|
|
116 |
# Remove empty relations |
|
|
117 |
total = [t for t in total if t] |
|
|
118 |
return total |
|
|
119 |
|
|
|
120 |
|
|
|
121 |
|
|
|
122 |
|
|
|
123 |
def cui_to_uri(api_key, cui): |
|
|
124 |
""" |
|
|
125 |
Function to map from cui to uri if possible. Uses biontology portal |
|
|
126 |
Input: |
|
|
127 |
- api_key: str, |
|
|
128 |
api usage key change it in setting.yaml |
|
|
129 |
- cui: str, |
|
|
130 |
cui of the entity we wish to map the uri |
|
|
131 |
Output: |
|
|
132 |
- the uri found in string format or None |
|
|
133 |
""" |
|
|
134 |
|
|
|
135 |
REST_URL = "http://data.bioontology.org" |
|
|
136 |
annotations = get_json_with_api(api_key, REST_URL + "/search?include_properties=true&q=" + urllib2.quote(cui)) |
|
|
137 |
try: |
|
|
138 |
return annotations['collection'][0]['@id'] |
|
|
139 |
except Exception,e: |
|
|
140 |
print Exception |
|
|
141 |
print e |
|
|
142 |
return None |
|
|
143 |
|
|
|
144 |
def get_json_with_api(api_key, url): |
|
|
145 |
""" |
|
|
146 |
Helper funtion to retrieve a json from a url through urlib2 |
|
|
147 |
Input: |
|
|
148 |
- api_key: str, |
|
|
149 |
api usage key change it in setting.yaml |
|
|
150 |
- url: str, |
|
|
151 |
url to curl |
|
|
152 |
Output: |
|
|
153 |
- json-style dictionary with the curl results |
|
|
154 |
""" |
|
|
155 |
|
|
|
156 |
opener = urllib2.build_opener() |
|
|
157 |
opener.addheaders = [('Authorization', 'apikey token=' + api_key)] |
|
|
158 |
return json.loads(opener.open(url).read()) |
|
|
159 |
|
|
|
160 |
|
|
|
161 |
def threshold_concepts(concepts, hard_num=3, score=None): |
|
|
162 |
""" |
|
|
163 |
Thresholding concepts from metamap to keep only the most probable ones. |
|
|
164 |
Currently supporting thresholding on the first-N (hard_num) or based on |
|
|
165 |
the concept score. |
|
|
166 |
Input: |
|
|
167 |
- concepts: list, |
|
|
168 |
list of Metamap Class concepts |
|
|
169 |
- hard_num: int, |
|
|
170 |
the first-N concepts to keep, if this thresholidng is selected |
|
|
171 |
- score: float, |
|
|
172 |
lowest accepted concept score, if this thresholidng is selected |
|
|
173 |
""" |
|
|
174 |
|
|
|
175 |
if hard_num: |
|
|
176 |
if hard_num >= len(concepts): |
|
|
177 |
return concepts |
|
|
178 |
elif hard_num < len(concepts): |
|
|
179 |
return concepts[:hard_num] |
|
|
180 |
elif score: |
|
|
181 |
return [c for c in concepts if c.score > score] |
|
|
182 |
else: |
|
|
183 |
return concepts |
|
|
184 |
|
|
|
185 |
|
|
|
186 |
|
|
|
187 |
|
|
|
188 |
def get_name_concept(concept): |
|
|
189 |
""" |
|
|
190 |
Get name from the metamap concept. Tries different variations and |
|
|
191 |
returns the name found. |
|
|
192 |
Input: |
|
|
193 |
- concept: Metamap class concept, as generated from mmap_extract |
|
|
194 |
for example |
|
|
195 |
Output: |
|
|
196 |
- name: str, |
|
|
197 |
the name found for this concept |
|
|
198 |
""" |
|
|
199 |
|
|
|
200 |
name = '' |
|
|
201 |
if hasattr(concept, 'preferred_name'): |
|
|
202 |
name = concept.preferred_name |
|
|
203 |
elif hasattr(concept, 'long_form') and hasattr(concept, 'short_form'): |
|
|
204 |
name = concept.long_form + '|' + concept.short_form |
|
|
205 |
elif hasattr(concept, 'long_form'): |
|
|
206 |
name = concept.long_form |
|
|
207 |
elif hasattr(concept, 'short_form'): |
|
|
208 |
name = concept.short_form |
|
|
209 |
else: |
|
|
210 |
name = 'NO NAME IN CONCEPT' |
|
|
211 |
return name |
|
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
def metamap_ents(x): |
|
|
216 |
""" |
|
|
217 |
Function to get entities in usable form. |
|
|
218 |
Exctracts metamap concepts first, thresholds them and |
|
|
219 |
tries to extract names and uris for the concepts to be |
|
|
220 |
more usable. |
|
|
221 |
Input: |
|
|
222 |
- x: str, |
|
|
223 |
sentence to extract entities |
|
|
224 |
Output: |
|
|
225 |
- ents: list, |
|
|
226 |
list of entities found. Each entity is a dictionary with |
|
|
227 |
fields id (no. found in sentence), name if retrieved, cui if |
|
|
228 |
available and uri if found |
|
|
229 |
""" |
|
|
230 |
|
|
|
231 |
# API KEY to biontology mapping from cui to uri |
|
|
232 |
API_KEY = settings['apis']['biont'] |
|
|
233 |
concepts = mmap_extract(x) |
|
|
234 |
concepts = threshold_concepts(concepts) |
|
|
235 |
ents = [] |
|
|
236 |
for i, concept in enumerate(concepts): |
|
|
237 |
ent = {} |
|
|
238 |
ent['ent_id'] = i |
|
|
239 |
ent['name'] = get_name_concept(concept) |
|
|
240 |
if hasattr(concept, 'cui'): |
|
|
241 |
ent['cui'] = concept.cui |
|
|
242 |
ent['uri'] = cui_to_uri(API_KEY, ent['cui']) |
|
|
243 |
else: |
|
|
244 |
ent['cui'] = None |
|
|
245 |
ent['uri'] = None |
|
|
246 |
ents.append(ent) |
|
|
247 |
return ents |
|
|
248 |
|
|
|
249 |
|
|
|
250 |
def extract_entities(text, json_={}): |
|
|
251 |
""" |
|
|
252 |
Extract entities from a given text using metamap and |
|
|
253 |
generate a json, preserving infro regarding the sentence |
|
|
254 |
of each entity that was found. For the time being, we preserve |
|
|
255 |
both concepts and the entities related to them |
|
|
256 |
Input: |
|
|
257 |
- text: str, |
|
|
258 |
a piece of text or sentence |
|
|
259 |
- json_: dic, |
|
|
260 |
sometimes the json to be returned is given to us to be enriched |
|
|
261 |
Defaults to an empty json_ |
|
|
262 |
Output: |
|
|
263 |
- json_: dic, |
|
|
264 |
json with fields text, sents, concepts and entities |
|
|
265 |
containg the final results |
|
|
266 |
""" |
|
|
267 |
json_['text'] = text |
|
|
268 |
# Tokenize the text |
|
|
269 |
sents = sent_tokenize(text) |
|
|
270 |
json_['sents'] = [{'sent_id': i, 'sent_text': sent} for i, sent in enumerate(sents)] |
|
|
271 |
json_['concepts'], _ = mmap_extract(text) |
|
|
272 |
json_['entities'] = {} |
|
|
273 |
for i, sent in enumerate(json_['sents']): |
|
|
274 |
ents = metamap_ents(sent) |
|
|
275 |
json_['entities'][sent['sent_id']] = ents |
|
|
276 |
return json_ |
|
|
277 |
|
|
|
278 |
|
|
|
279 |
def enrich_with_triples(results, subject, pred='MENTIONED_IN'): |
|
|
280 |
""" |
|
|
281 |
Enrich with rdf triples a json dictionary in the form of: |
|
|
282 |
entity-URI -- MENTIONED_IN -- 'Text 'Title'. Only entities with |
|
|
283 |
uri's are considered. |
|
|
284 |
Input: |
|
|
285 |
- results: dic, |
|
|
286 |
json-style dictionary genereated from the extract_entities function |
|
|
287 |
- subject: str, |
|
|
288 |
the name of the text document in which the entities are mentioned |
|
|
289 |
- pred: str, |
|
|
290 |
the predicate to be used as a link between the uri and the title |
|
|
291 |
Output: |
|
|
292 |
- results: dic, |
|
|
293 |
the same dictionary with one more |
|
|
294 |
""" |
|
|
295 |
triples = [] |
|
|
296 |
for sent_key, ents in results['entities'].iteritems(): |
|
|
297 |
for ent in ents: |
|
|
298 |
if ent['uri']: |
|
|
299 |
triples.append({'subj': ent['uri'], 'pred': pred, 'obj': subject}) |
|
|
300 |
results['triples'] = triples |
|
|
301 |
return results |
|
|
302 |
|
|
|
303 |
|
|
|
304 |
|
|
|
305 |
def semrep_wrapper(text): |
|
|
306 |
""" |
|
|
307 |
Function wrapper for SemRep binary. It is called with flags |
|
|
308 |
-F only and changing this will cause this parsing to fail, cause |
|
|
309 |
the resulting lines won't have the same structure. |
|
|
310 |
Input: |
|
|
311 |
- text: str, |
|
|
312 |
a piece of text or sentence |
|
|
313 |
Output: |
|
|
314 |
- results: dic, |
|
|
315 |
jston-style dictionary with fields text and sents. Each |
|
|
316 |
sentence has entities and relations found in it. Each entity and |
|
|
317 |
each relation has attributes denoted in the corresponding |
|
|
318 |
mappings dictionary. |
|
|
319 |
""" |
|
|
320 |
# Exec the binary |
|
|
321 |
cmd = "echo " + text + " | ./semrep.v1.7 -L 2015 -Z 2015AA -F" |
|
|
322 |
semrep_dir = settings['load']['path']['semrep'] |
|
|
323 |
lines = runProcess(cmd, semrep_dir) |
|
|
324 |
# mapping of line elements to fields |
|
|
325 |
mappings = { |
|
|
326 |
"text": { |
|
|
327 |
"sent_id": 4, |
|
|
328 |
"sent_text": 6 |
|
|
329 |
}, |
|
|
330 |
"entity": { |
|
|
331 |
'cuid': 6, |
|
|
332 |
'label': 7, |
|
|
333 |
'sem_types': 8, |
|
|
334 |
'score': 15 |
|
|
335 |
}, |
|
|
336 |
"relation": { |
|
|
337 |
'subject__cui': 8, |
|
|
338 |
'subject__label': 9, |
|
|
339 |
'subject__sem_types': 10, |
|
|
340 |
'subject__sem_type': 11, |
|
|
341 |
'subject__score': 18, |
|
|
342 |
'predicate__type': 21, |
|
|
343 |
'predicate': 22, |
|
|
344 |
'negation': 23, |
|
|
345 |
'object__cui': 28, |
|
|
346 |
'object__label': 29, |
|
|
347 |
'object__sem_types': 30, |
|
|
348 |
'object__sem_type': 31, |
|
|
349 |
'object__score': 38, |
|
|
350 |
} |
|
|
351 |
} |
|
|
352 |
results = {'sents': [], 'text': text} |
|
|
353 |
for line in lines: |
|
|
354 |
# If Sentence |
|
|
355 |
if line.startswith('SE'): |
|
|
356 |
elements = line.split('|') |
|
|
357 |
# New sentence that was processed |
|
|
358 |
if elements[5] == 'text': |
|
|
359 |
tmp = {"entities": [], "relations": []} |
|
|
360 |
for key, ind in mappings['text'].iteritems(): |
|
|
361 |
tmp[key] = elements[ind] |
|
|
362 |
results['sents'].append(tmp) |
|
|
363 |
# A line containing entity info |
|
|
364 |
if elements[5] == 'entity': |
|
|
365 |
tmp = {} |
|
|
366 |
for key, ind in mappings['entity'].iteritems(): |
|
|
367 |
if key == 'sem_types': |
|
|
368 |
tmp[key] = elements[ind].split(',') |
|
|
369 |
tmp[key] = elements[ind] |
|
|
370 |
results['sents'][-1]['entities'].append(tmp) |
|
|
371 |
# A line containing relation info |
|
|
372 |
if elements[5] == 'relation': |
|
|
373 |
tmp = {} |
|
|
374 |
for key, ind in mappings['relation'].iteritems(): |
|
|
375 |
if 'sem_types' in key: |
|
|
376 |
tmp[key] = elements[ind].split(',') |
|
|
377 |
else: |
|
|
378 |
tmp[key] = elements[ind] |
|
|
379 |
results['sents'][-1]['relations'].append(tmp) |
|
|
380 |
return results |
|
|
381 |
|
|
|
382 |
|
|
|
383 |
|
|
|
384 |
|
|
|
385 |
|
|
|
386 |
|
|
|
387 |
results = extract_entities(text) |
|
|
388 |
results = enrich_with_triples(results, subject='Text Title') |
|
|
389 |
|
|
|
390 |
|