|
a |
|
b/data_saver.py |
|
|
1 |
#!/usr/bin/python !/usr/bin/env python |
|
|
2 |
# -*- coding: utf-8 -* |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
# Functions to extract knowledge from medical text. Everything related to |
|
|
6 |
# reading, parsing and extraction needed for the knowledge base. Also, |
|
|
7 |
# some wrappers for SemRep, MetaMap and Reverb. |
|
|
8 |
|
|
|
9 |
import json |
|
|
10 |
import os |
|
|
11 |
import py2neo |
|
|
12 |
import unicodecsv as csv2 |
|
|
13 |
import pymongo |
|
|
14 |
from config import settings |
|
|
15 |
from utilities import time_log |
|
|
16 |
from data_extractor import chunk_document_collection |
|
|
17 |
from multiprocessing import cpu_count, Pool |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
suppress_log_to_file = py2neo.watch('neo4j', |
|
|
21 |
level='ERROR', out='./out/neo4j.log') |
|
|
22 |
suppress_log_to_file2 = py2neo.watch('httpstream', |
|
|
23 |
level='ERROR', out='./out/neo4j.log') |
|
|
24 |
|
|
|
25 |
def save_json2(json_): |
|
|
26 |
""" |
|
|
27 |
Helper function to save enriched medical json to file. |
|
|
28 |
Input: |
|
|
29 |
- json_: dic, |
|
|
30 |
json-style dictionary generated from the extractors in the |
|
|
31 |
previous phase |
|
|
32 |
""" |
|
|
33 |
|
|
|
34 |
# Output file location from settings |
|
|
35 |
outfile = settings['out']['json']['out_path'] |
|
|
36 |
with open(outfile, 'w+') as f: |
|
|
37 |
json.dump(json_, f, indent=3) |
|
|
38 |
|
|
|
39 |
def save_json(json_): |
|
|
40 |
""" |
|
|
41 |
Helper function to save enriched medical json to file |
|
|
42 |
. Input: |
|
|
43 |
- json_: dic, |
|
|
44 |
json-style dictionary generated from the extractors in the |
|
|
45 |
previous phase |
|
|
46 |
""" |
|
|
47 |
|
|
|
48 |
# Output file location from settings |
|
|
49 |
outfile = settings['out']['json']['out_path'] |
|
|
50 |
if settings['pipeline']['in']['stream'] or settings['pipeline']['in']['parallel']: |
|
|
51 |
print 'mpainei append' |
|
|
52 |
if os.path.isfile(outfile): |
|
|
53 |
with open(outfile, 'r') as f: |
|
|
54 |
docs1 = json.load(f)[settings['out']['json']['json_doc_field']] |
|
|
55 |
json_[settings['out']['json']['json_doc_field']] = json_[settings['out']['json']['json_doc_field']] + docs1 |
|
|
56 |
with open(outfile, 'w+') as f: |
|
|
57 |
json.dump(json_, f, indent=3) |
|
|
58 |
|
|
|
59 |
# with open (outfile, mode="r+") as file: |
|
|
60 |
# file.seek(0,2) |
|
|
61 |
# position = file.tell() -1 |
|
|
62 |
# file.seek(position) |
|
|
63 |
# file.write( ",{}]".format(json.dumps(dictionary)) ) |
|
|
64 |
|
|
|
65 |
# with open(outfile, 'a+') as f: |
|
|
66 |
# json1 = json.load(f) |
|
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
|
71 |
def save_csv(json_): |
|
|
72 |
""" |
|
|
73 |
Helper function to save enriched medical json to file. |
|
|
74 |
Input: |
|
|
75 |
- json_: dic, |
|
|
76 |
json-style dictionary generated from the extractors in the |
|
|
77 |
previous phase |
|
|
78 |
""" |
|
|
79 |
|
|
|
80 |
# Output file location from settings |
|
|
81 |
outfile = settings['out']['json']['out_path'] |
|
|
82 |
with open(outfile, 'w+') as f: |
|
|
83 |
json.dump(json_, f, indent=3) |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
|
87 |
def save_neo4j(json_): |
|
|
88 |
""" |
|
|
89 |
Helper function to save enriched medical json to file. |
|
|
90 |
Input: |
|
|
91 |
- json_: dic, |
|
|
92 |
json-style dictionary generated from the extractors in the |
|
|
93 |
previous phase |
|
|
94 |
""" |
|
|
95 |
|
|
|
96 |
# Output file location from settings |
|
|
97 |
outfile = settings['out']['json']['out_path'] |
|
|
98 |
with open(outfile, 'w+') as f: |
|
|
99 |
json.dump(json_, f, indent=3) |
|
|
100 |
|
|
|
101 |
def aggregate_mentions(entity_pmc_edges): |
|
|
102 |
""" |
|
|
103 |
Function to aggregate recurring entity:MENTIONED_IN:pmc relations. |
|
|
104 |
Input: |
|
|
105 |
- entity_pmc_edges: list, |
|
|
106 |
list of dicts as generated by create_neo4j_ functions |
|
|
107 |
Outpu: |
|
|
108 |
- entity_pmc_edges: list, |
|
|
109 |
list of dicts with aggregated values in identical ages |
|
|
110 |
""" |
|
|
111 |
uniques = {} |
|
|
112 |
c = 0 |
|
|
113 |
for edge in entity_pmc_edges: |
|
|
114 |
cur_key = str(edge[':START_ID'])+'_'+str(edge[':END_ID']) |
|
|
115 |
flag = False |
|
|
116 |
if cur_key in uniques: |
|
|
117 |
uniques[cur_key]['score:float[]'] = uniques[cur_key]['score:float[]']+';'+edge['score:float[]'] |
|
|
118 |
uniques[cur_key]['sent_id:string[]'] = uniques[cur_key]['sent_id:string[]']+';'+edge['sent_id:string[]'] |
|
|
119 |
uniques[cur_key]['resource:string[]'] = uniques[cur_key]['resource:string[]']+';'+edge['resource:string[]'] |
|
|
120 |
flag = True |
|
|
121 |
else: |
|
|
122 |
uniques[cur_key] = edge |
|
|
123 |
if flag: |
|
|
124 |
c += 1 |
|
|
125 |
un_list = [] |
|
|
126 |
time_log('Aggregated %d mentions from %d in total' % (c, len(entity_pmc_edges))) |
|
|
127 |
for k, v in uniques.iteritems(): |
|
|
128 |
un_list.append(v) |
|
|
129 |
return un_list |
|
|
130 |
|
|
|
131 |
|
|
|
132 |
def aggregate_relations(relations_edges): |
|
|
133 |
""" |
|
|
134 |
Function to aggregate recurring entity:SEMREP_RELATION:entity relations. |
|
|
135 |
Input: |
|
|
136 |
- relations_edges: list, |
|
|
137 |
list of dicts as generated by create_neo4j_ functions |
|
|
138 |
Outpu: |
|
|
139 |
- relations_edges: list, |
|
|
140 |
list of dicts with aggregated values in identical ages |
|
|
141 |
""" |
|
|
142 |
uniques = {} |
|
|
143 |
c = 0 |
|
|
144 |
for edge in relations_edges: |
|
|
145 |
cur_key = str(edge[':START_ID'])+'_'+str(edge[':TYPE'])+'_'+str(edge[':END_ID']) |
|
|
146 |
flag = False |
|
|
147 |
if cur_key in uniques: |
|
|
148 |
if 'sent_id:string[]' in edge.keys(): |
|
|
149 |
if edge['sent_id:string[]'] in uniques[cur_key]['sent_id:string[]']: |
|
|
150 |
continue |
|
|
151 |
for field in edge.keys(): |
|
|
152 |
if not(field in [':START_ID', ':TYPE', ':END_ID']): |
|
|
153 |
uniques[cur_key][field] = uniques[cur_key][field]+';'+edge[field] |
|
|
154 |
flag = True |
|
|
155 |
else: |
|
|
156 |
uniques[cur_key] = edge |
|
|
157 |
if flag: |
|
|
158 |
c += 1 |
|
|
159 |
un_list = [] |
|
|
160 |
time_log('Aggregated %d relations from %d in total' % (c, len(relations_edges))) |
|
|
161 |
for k, v in uniques.iteritems(): |
|
|
162 |
un_list.append(v) |
|
|
163 |
return un_list |
|
|
164 |
|
|
|
165 |
|
|
|
166 |
def create_neo4j_results(json_, key='harvester'): |
|
|
167 |
""" |
|
|
168 |
Helper function to call either the create_neo4j_harvester or the |
|
|
169 |
create_neo4j_edges function, according to the type of input. |
|
|
170 |
Input: |
|
|
171 |
- json_: dic, |
|
|
172 |
dictionary-json style generated from the parsers/extractors in the |
|
|
173 |
previous stages |
|
|
174 |
- key: str, |
|
|
175 |
string for denoting which create_neo4j_ function to use |
|
|
176 |
Output: |
|
|
177 |
- results: dic, |
|
|
178 |
json-style dictionary with keys 'nodes' and 'edges' containing |
|
|
179 |
a list of the transformed nodes and edges to be created/updated in |
|
|
180 |
neo4j. Each element in the list has a 'type' field denoting the type |
|
|
181 |
of the node/edge and the 'value' field containg the nodes/edges |
|
|
182 |
""" |
|
|
183 |
if key == 'harvester': |
|
|
184 |
results = create_neo4j_harvester(json_) |
|
|
185 |
elif key == 'edges': |
|
|
186 |
results = create_neo4j_edges(json_) |
|
|
187 |
else: |
|
|
188 |
time_log('Type %s of data not yet supported!' % key) |
|
|
189 |
raise NotImplementedError |
|
|
190 |
return results |
|
|
191 |
|
|
|
192 |
def create_neo4j_edges(json_): |
|
|
193 |
""" |
|
|
194 |
Function that takes the edges file as provided and generates the nodes |
|
|
195 |
and relationships entities needed for creating/updating the neo4j database. |
|
|
196 |
Currently supporting: |
|
|
197 |
- Nodes: ['Articles(PMC)', 'Entities(MetaMapConcepts)'] |
|
|
198 |
- Edges: ['Relations between Entities'] |
|
|
199 |
Input: |
|
|
200 |
- json_: dic, |
|
|
201 |
json-style dictionary generated from the parser in the |
|
|
202 |
previous phase |
|
|
203 |
Output: |
|
|
204 |
- results: dic, |
|
|
205 |
json-style dictionary with keys 'nodes' and 'edges' containing |
|
|
206 |
a list of the transformed nodes and edges to be created/updated in |
|
|
207 |
neo4j. Each element in the list has a 'type' field denoting the type |
|
|
208 |
of the node/edge and the 'value' field containg the nodes/edges |
|
|
209 |
""" |
|
|
210 |
# docfield containing list of elements containing the relations |
|
|
211 |
edgefield = settings['load']['edges']['itemfield'] |
|
|
212 |
# field containing the type of the node for the subject |
|
|
213 |
sub_type = settings['load']['edges']['sub_type'] |
|
|
214 |
# field containing the source of the node for the subject |
|
|
215 |
sub_source = settings['load']['edges']['sub_source'] |
|
|
216 |
# field containing the type of the node for the object |
|
|
217 |
obj_type = settings['load']['edges']['obj_type'] |
|
|
218 |
# field containing the source of the node for the object |
|
|
219 |
obj_source = settings['load']['edges']['obj_source'] |
|
|
220 |
results = {'nodes':[], 'edges':[{'type':'NEW', 'values':[]}]} |
|
|
221 |
entities_nodes = [] |
|
|
222 |
articles_nodes = [] |
|
|
223 |
other_nodes_sub = [] |
|
|
224 |
other_nodes_obj = [] |
|
|
225 |
|
|
|
226 |
for edge in json_[edgefield]: |
|
|
227 |
if sub_type == 'Entity': |
|
|
228 |
if not(edge['s'] in entities_nodes): |
|
|
229 |
entities_nodes.append(edge['s']) |
|
|
230 |
elif sub_type == 'Article': |
|
|
231 |
if not(edge['s'] in articles_nodes): |
|
|
232 |
articles_nodes.append(edge['s']) |
|
|
233 |
else: |
|
|
234 |
if not(edge['s'] in other_nodes_sub): |
|
|
235 |
other_nodes_sub.append(edge['s']) |
|
|
236 |
if obj_type == 'Entity': |
|
|
237 |
if not(edge['o'] in entities_nodes): |
|
|
238 |
entities_nodes.append(edge['o']) |
|
|
239 |
elif obj_type == 'Article': |
|
|
240 |
if not(edge['o'] in articles_nodes): |
|
|
241 |
articles_nodes.append(edge['o']) |
|
|
242 |
else: |
|
|
243 |
if not(edge['o'] in other_nodes_obj): |
|
|
244 |
other_nodes_obj.append(edge['o']) |
|
|
245 |
#sub_id_key = next((key for key in edge['s'].keys() if ':ID' in key), None) |
|
|
246 |
#obj_id_key = next((key for key in edge['o'].keys() if ':ID' in key), None) |
|
|
247 |
results['edges'][0]['values'].append({':START_ID':edge['s']['id:ID'], ':TYPE':edge['p'], 'resource:string[]':settings['neo4j']['resource'], ':END_ID':edge['o']['id:ID']}) |
|
|
248 |
if entities_nodes: |
|
|
249 |
results['nodes'].append({'type': 'Entity', 'values': entities_nodes}) |
|
|
250 |
if articles_nodes: |
|
|
251 |
results['nodes'].append({'type': 'Article', 'values': articles_nodes}) |
|
|
252 |
if other_nodes_sub: |
|
|
253 |
results['nodes'].append({'type': sub_type, 'values': other_nodes_sub}) |
|
|
254 |
if other_nodes_obj: |
|
|
255 |
results['nodes'].append({'type': obj_type, 'values': other_nodes_obj}) |
|
|
256 |
return results |
|
|
257 |
|
|
|
258 |
def create_neo4j_harvester(json_): |
|
|
259 |
""" |
|
|
260 |
Function that takes the enriched json_ file and generates the nodes |
|
|
261 |
and relationships entities needed for creating/updating the neo4j database. |
|
|
262 |
Currently supporting: |
|
|
263 |
- Nodes: ['Articles(PMC)', 'Entities(UMLS-Concepts)'] |
|
|
264 |
- Edges: ['Relations between Entities', 'Entity:MENTIONED_IN:Article'] |
|
|
265 |
Input: |
|
|
266 |
- json_: dic, |
|
|
267 |
json-style dictionary generated from the extractors in the |
|
|
268 |
previous phase |
|
|
269 |
Output: |
|
|
270 |
- results: dic, |
|
|
271 |
json-style dictionary with keys 'nodes' and 'edges' containing |
|
|
272 |
a list of the transformed nodes and edges to be created/updated in |
|
|
273 |
neo4j. Each element in the list has a 'type' field denoting the type |
|
|
274 |
of the node/edge and the 'value' field containg the nodes/edges |
|
|
275 |
""" |
|
|
276 |
# docfield containing list of elements |
|
|
277 |
out_outfield = settings['out']['json']['itemfield'] |
|
|
278 |
# textfield to read text from |
|
|
279 |
out_textfield = settings['out']['json']['json_text_field'] |
|
|
280 |
# idfield where id of document is stored |
|
|
281 |
out_idfield = settings['out']['json']['json_id_field'] |
|
|
282 |
# labelfield where the label is located |
|
|
283 |
out_labelfield = settings['out']['json']['json_label_field'] |
|
|
284 |
# Sentence Prefix |
|
|
285 |
sent_prefix = settings['load']['text']['sent_prefix'] |
|
|
286 |
if sent_prefix == 'None' or not(sent_prefix): |
|
|
287 |
sent_prefix = '' |
|
|
288 |
entities_nodes = [] |
|
|
289 |
unique_sent = {} |
|
|
290 |
articles_nodes = [] |
|
|
291 |
entity_pmc_edges = [] |
|
|
292 |
relations_edges = [] |
|
|
293 |
unique_cuis = [] |
|
|
294 |
for doc in json_[out_outfield]: |
|
|
295 |
pmid = doc[out_idfield] |
|
|
296 |
for sent in doc['sents']: |
|
|
297 |
cur_sent_id = str(pmid)+'_' + str(sent_prefix) + '_' + str(sent['sent_id']) |
|
|
298 |
unique_sent[cur_sent_id] = sent['sent_text'] |
|
|
299 |
for ent in sent['entities']: |
|
|
300 |
if ent['cuid']: |
|
|
301 |
if not(ent['cuid'] in unique_cuis): |
|
|
302 |
unique_cuis.append(ent['cuid']) |
|
|
303 |
if (type(ent['sem_types']) == list and len(ent['sem_types']) > 1): |
|
|
304 |
sem_types = ';'.join(ent['sem_types']) |
|
|
305 |
elif (',' in ent['sem_types']): |
|
|
306 |
sem_types = ';'.join(ent['sem_types'].split(',')) |
|
|
307 |
else: |
|
|
308 |
sem_types = ent['sem_types'] |
|
|
309 |
#if not(ent['cuid']): |
|
|
310 |
entities_nodes.append({'id:ID': ent['cuid'], |
|
|
311 |
'label': ent['label'], |
|
|
312 |
'sem_types:string[]': sem_types}) |
|
|
313 |
entity_pmc_edges.append({':START_ID': ent['cuid'], |
|
|
314 |
'score:float[]': ent['score'], |
|
|
315 |
'sent_id:string[]': cur_sent_id, |
|
|
316 |
':TYPE':'MENTIONED_IN', |
|
|
317 |
'resource:string[]':settings['neo4j']['resource'], |
|
|
318 |
':END_ID': pmid}) |
|
|
319 |
for rel in sent['relations']: |
|
|
320 |
if rel['subject__cui'] and rel['object__cui']: |
|
|
321 |
relations_edges.append({':START_ID': rel['subject__cui'], |
|
|
322 |
'subject_score:float[]': rel['subject__score'], |
|
|
323 |
'subject_sem_type:string[]': rel['subject__sem_type'], |
|
|
324 |
':TYPE': rel['predicate'].replace('(','__').replace(')','__'), |
|
|
325 |
'pred_type:string[]': rel['predicate__type'], |
|
|
326 |
'object_score:float[]': rel['object__score'], |
|
|
327 |
'object_sem_type:string[]': rel['object__sem_type'], |
|
|
328 |
'sent_id:string[]': cur_sent_id, |
|
|
329 |
'negation:string[]': rel['negation'], |
|
|
330 |
'resource:string[]':settings['neo4j']['resource'], |
|
|
331 |
':END_ID': rel['object__cui']}) |
|
|
332 |
articles_nodes.append({'id:ID': doc[out_idfield], |
|
|
333 |
'title': doc[out_labelfield], |
|
|
334 |
'journal': doc['journal']}) |
|
|
335 |
entity_pmc_edges = aggregate_mentions(entity_pmc_edges) |
|
|
336 |
relations_edges = aggregate_relations(relations_edges) |
|
|
337 |
results = {'nodes': [{'type': 'Entity', 'values': entities_nodes}, {'type': 'Article', 'values': articles_nodes}], |
|
|
338 |
'edges': [{'type': 'relation', 'values': relations_edges}, {'type': 'mention', 'values': entity_pmc_edges}] |
|
|
339 |
} |
|
|
340 |
return results |
|
|
341 |
|
|
|
342 |
|
|
|
343 |
def create_neo4j_csv(results): |
|
|
344 |
""" |
|
|
345 |
Create csv's for use by the neo4j import tool. Relies on create_neo4j_ functions |
|
|
346 |
output and transforms it to suitable format for automatic importing. |
|
|
347 |
Input: |
|
|
348 |
- results: dic, |
|
|
349 |
json-style dictionary. Check create_neo4j_ function output for |
|
|
350 |
details |
|
|
351 |
Output: |
|
|
352 |
- None just saves the documents in the allocated path as defined |
|
|
353 |
in settings.yaml |
|
|
354 |
""" |
|
|
355 |
outpath = settings['out']['csv']['out_path'] |
|
|
356 |
entities_nodes = None |
|
|
357 |
articles_nodes = None |
|
|
358 |
relations_edges = None |
|
|
359 |
entity_pmc_edges = None |
|
|
360 |
other_nodes = [] |
|
|
361 |
other_edges = [] |
|
|
362 |
for nodes in results['nodes']: |
|
|
363 |
if nodes['type'] == 'Entity': |
|
|
364 |
entities_nodes = nodes['values'] |
|
|
365 |
elif nodes['type'] == 'Article': |
|
|
366 |
articles_nodes = nodes['values'] |
|
|
367 |
else: |
|
|
368 |
other_nodes.extend(nodes['values']) |
|
|
369 |
for edges in results['edges']: |
|
|
370 |
if edges['type'] == 'relation': |
|
|
371 |
relations_edges = edges['values'] |
|
|
372 |
elif edges['type'] == 'mention': |
|
|
373 |
entity_pmc_edges = edges['values'] |
|
|
374 |
elif edges['type'] == 'NEW': |
|
|
375 |
other_edges.extend(edges['values']) |
|
|
376 |
|
|
|
377 |
dic_ = { |
|
|
378 |
'entities.csv': entities_nodes, |
|
|
379 |
'articles.csv': articles_nodes, |
|
|
380 |
'other_nodes.csv': other_nodes, |
|
|
381 |
'entities_pmc.csv':entity_pmc_edges, |
|
|
382 |
'relations.csv':relations_edges, |
|
|
383 |
'other_edges.csv': other_edges |
|
|
384 |
} |
|
|
385 |
|
|
|
386 |
dic_fiels = { |
|
|
387 |
'entities.csv': ['id:ID', 'label', 'sem_types:string[]'], |
|
|
388 |
'articles.csv': ['id:ID', 'title', 'journal','sent_id:string[]'], |
|
|
389 |
'other_nodes.csv': ['id:ID'], |
|
|
390 |
'entities_pmc.csv':[':START_ID','score:float[]','sent_id:string[]', 'resource:string[]', ':END_ID'], |
|
|
391 |
'relations.csv':[':START_ID','subject_score:float[]','subject_sem_type:string[]',':TYPE','pred_type:string[]', |
|
|
392 |
'object_score:float[]','object_sem_type:string[]','sent_id:string[]','negation:string[]', 'resource:string[]', ':END_ID'], |
|
|
393 |
'other_edges.csv':[':START_ID', ':TYPE', 'resource:string[]', ':END_ID'] |
|
|
394 |
} |
|
|
395 |
|
|
|
396 |
for k, toCSV in dic_.iteritems(): |
|
|
397 |
if toCSV: |
|
|
398 |
keys = toCSV[0].keys() |
|
|
399 |
out = os.path.join(outpath, k) |
|
|
400 |
with open(out, 'wb') as output_file: |
|
|
401 |
time_log("Created file %s" % k) |
|
|
402 |
dict_writer = csv2.DictWriter(output_file, fieldnames=dic_fiels[k], encoding='utf-8') |
|
|
403 |
dict_writer.writeheader() |
|
|
404 |
dict_writer.writerows(toCSV) |
|
|
405 |
time_log('Created all documents needed') |
|
|
406 |
|
|
|
407 |
|
|
|
408 |
|
|
|
409 |
def fix_on_create_nodes(node): |
|
|
410 |
""" |
|
|
411 |
Helper function to create the correct cypher string for |
|
|
412 |
querying and merging a new node to the graph. This is used |
|
|
413 |
when no node is matched and a new one has to be created. |
|
|
414 |
Input: |
|
|
415 |
- node: dic, |
|
|
416 |
dictionary of a node generated from some create_neo4j_ |
|
|
417 |
function |
|
|
418 |
Output: |
|
|
419 |
- s: string, |
|
|
420 |
part of cypher query, responsible handling the creation of anew node |
|
|
421 |
""" |
|
|
422 |
s = ' ' |
|
|
423 |
# Has at least one other attribute to create than id |
|
|
424 |
if len(node.keys())>1: |
|
|
425 |
s = 'ON CREATE SET ' |
|
|
426 |
for key, value in node.iteritems(): |
|
|
427 |
if (value) and (value != " "): |
|
|
428 |
if 'ID' in key.split(':'): |
|
|
429 |
continue |
|
|
430 |
elif 'string[]' in key: |
|
|
431 |
field = key.split(':')[0] |
|
|
432 |
string_value = '[' |
|
|
433 |
for i in value.split(';'): |
|
|
434 |
string_value += '"' + i + '"' + ',' |
|
|
435 |
string_value = string_value[:-1] + ']' |
|
|
436 |
s += ' a.%s = %s,' % (field, string_value) |
|
|
437 |
elif 'float[]' in key: |
|
|
438 |
field = key.split(':')[0] |
|
|
439 |
string_value = str([int(i) for i in value.split(';')]) |
|
|
440 |
s += ' a.%s = %s,' % (field, string_value) |
|
|
441 |
else: |
|
|
442 |
field = key.split(':')[0] |
|
|
443 |
s += ' a.%s = "%s",' % (field, value.replace('"', "'")) |
|
|
444 |
s = s[:-1] |
|
|
445 |
# No attributes |
|
|
446 |
return s |
|
|
447 |
|
|
|
448 |
|
|
|
449 |
def create_merge_query(node, type_): |
|
|
450 |
""" |
|
|
451 |
Creating the whole merge and update cypher query for a node. |
|
|
452 |
Input: |
|
|
453 |
- node: dic, |
|
|
454 |
dictionary of a node containing the attributes of the |
|
|
455 |
node |
|
|
456 |
- type_: str, |
|
|
457 |
type of the node to be merged |
|
|
458 |
Output: |
|
|
459 |
- quer: str, |
|
|
460 |
the complete cypher query ready to be run |
|
|
461 |
""" |
|
|
462 |
quer = """ |
|
|
463 |
MERGE (a:%s {id:"%s"}) |
|
|
464 |
%s""" % (type_, node["id:ID"], fix_on_create_nodes(node)) |
|
|
465 |
return quer |
|
|
466 |
|
|
|
467 |
|
|
|
468 |
def populate_nodes(graph, nodes, type_): |
|
|
469 |
""" |
|
|
470 |
Function that actually calls the cypher query and populates the graph |
|
|
471 |
with nodes of type_, merging on already existing nodes on their id_. |
|
|
472 |
Input: |
|
|
473 |
-graph: py2neo.Graph, |
|
|
474 |
object representing the graph in neo4j. Using py2neo. |
|
|
475 |
- nodes: list, |
|
|
476 |
list of dics containing the attributes of each node |
|
|
477 |
- type_: str, |
|
|
478 |
type of the node to be merged |
|
|
479 |
Output: None, populates the db. |
|
|
480 |
""" |
|
|
481 |
c = 0 |
|
|
482 |
total_rel = 0 |
|
|
483 |
time_log('~~~~~~ Will create nodes of type: %s ~~~~~~' % type_) |
|
|
484 |
for ent in nodes: |
|
|
485 |
c += 1 |
|
|
486 |
quer = create_merge_query(ent, type_) |
|
|
487 |
f = graph.run(quer) |
|
|
488 |
total_rel += f.stats()['nodes_created'] |
|
|
489 |
if c % 1000 == 0 and c > 999: |
|
|
490 |
time_log("Process: %d -- %0.2f %%" % (c, 100*c/float(len(nodes)))) |
|
|
491 |
time_log('#%s : %d' % (type_, c)) |
|
|
492 |
time_log('Finally added %d new nodes!' % total_rel) |
|
|
493 |
|
|
|
494 |
|
|
|
495 |
def create_edge_query(edge, sub_ent=settings['load']['edges']['sub_type'], |
|
|
496 |
obj_ent=settings['load']['edges']['obj_type']): |
|
|
497 |
""" |
|
|
498 |
Takes as input an edge, in the form of a dictionary, and returns the |
|
|
499 |
corresponding cypher query that: |
|
|
500 |
1) First Matches the start-end nodes and the type of the edge |
|
|
501 |
2) Merges the edge the following way: |
|
|
502 |
- If the edge doesn't exist it creates it setting all attributes |
|
|
503 |
of the edge according to its' values |
|
|
504 |
- If the edge exists, it updates the attributes that are both in the |
|
|
505 |
graph edge and the dictionary and creates the attributes that are not |
|
|
506 |
found in the graph edge but are provided in the edge dictionary |
|
|
507 |
Input: |
|
|
508 |
- edge, dict |
|
|
509 |
dictionary containing the edge properties |
|
|
510 |
- sub_ent, str |
|
|
511 |
string denoting what type is the subject node |
|
|
512 |
- obj_ent, str |
|
|
513 |
string denoting what type is the object node |
|
|
514 |
Output: |
|
|
515 |
- s, string |
|
|
516 |
query string to perform |
|
|
517 |
""" |
|
|
518 |
s = """MATCH (a:%s {id:"%s"}), (b:%s {id:"%s"}) |
|
|
519 |
MERGE (a)-[r:%s]->(b) |
|
|
520 |
ON MATCH SET """ % (sub_ent, edge[':START_ID'], obj_ent, edge[':END_ID'], edge[':TYPE']) |
|
|
521 |
for key, value in edge.iteritems(): |
|
|
522 |
# Don't see why this check should be here??? |
|
|
523 |
# if (value): |
|
|
524 |
if not(('START_ID' in key.split(':')) or ('END_ID' in key.split(':')) or ('TYPE' in key.split(':'))): |
|
|
525 |
if 'string[]' in key: |
|
|
526 |
field = key.split(':')[0] |
|
|
527 |
string_value = '[' |
|
|
528 |
for i in value.split(';'): |
|
|
529 |
string_value += '"' + i + '"' + ',' |
|
|
530 |
string_value = string_value[:-1] + ']' |
|
|
531 |
elif 'float[]' in key: |
|
|
532 |
field = key.split(':')[0] |
|
|
533 |
# Dealing with empty or non-scored elements |
|
|
534 |
tmp_s = [] |
|
|
535 |
for i in value.split(';'): |
|
|
536 |
try: |
|
|
537 |
tmp_s.append(int(i)) |
|
|
538 |
except ValueError: |
|
|
539 |
tmp_s.append(0) |
|
|
540 |
string_value = str(tmp_s) |
|
|
541 |
else: |
|
|
542 |
field = key.split(':')[0] |
|
|
543 |
string_value = value.replace('"', "'") |
|
|
544 |
s += ' r.%s = CASE WHEN NOT EXISTS(r.%s) THEN %s ELSE r.%s + %s END,' % (field, field, string_value, field, string_value) |
|
|
545 |
s = s[:-1] |
|
|
546 |
s += ' ON CREATE SET ' |
|
|
547 |
for key, value in edge.iteritems(): |
|
|
548 |
# Don't see why this check should be here??? |
|
|
549 |
# if (value): |
|
|
550 |
if not(('START_ID' in key.split(':')) or ('END_ID' in key.split(':')) or ('TYPE' in key.split(':'))): |
|
|
551 |
if 'string[]' in key: |
|
|
552 |
field = key.split(':')[0] |
|
|
553 |
string_value = '[' |
|
|
554 |
for i in value.split(';'): |
|
|
555 |
string_value += '"' + i + '"' + ',' |
|
|
556 |
string_value = string_value[:-1] + ']' |
|
|
557 |
elif 'float[]' in key: |
|
|
558 |
field = key.split(':')[0] |
|
|
559 |
# Dealing with empty or non-scored elements |
|
|
560 |
tmp_s = [] |
|
|
561 |
for i in value.split(';'): |
|
|
562 |
try: |
|
|
563 |
tmp_s.append(int(i)) |
|
|
564 |
except ValueError: |
|
|
565 |
tmp_s.append(0) |
|
|
566 |
string_value = str(tmp_s) |
|
|
567 |
else: |
|
|
568 |
field = key.split(':')[0] |
|
|
569 |
string_value = value.replace('"', "'") |
|
|
570 |
s += ' r.%s = %s,' % (field, string_value) |
|
|
571 |
s = s[:-1] |
|
|
572 |
return s |
|
|
573 |
|
|
|
574 |
|
|
|
575 |
|
|
|
576 |
|
|
|
577 |
def populate_relation_edges(graph, relations_edges): |
|
|
578 |
""" |
|
|
579 |
Function to create/merge the relation edges between existing entities. |
|
|
580 |
Input: |
|
|
581 |
- graph: py2neo.Graph, |
|
|
582 |
object representing the graph in neo4j. Using py2neo. |
|
|
583 |
- relations_edges: list, |
|
|
584 |
list of dics containing the attributes of each relation |
|
|
585 |
Output: None, populates the db. |
|
|
586 |
""" |
|
|
587 |
c = 0 |
|
|
588 |
total_rel = 0 |
|
|
589 |
for edge in relations_edges: |
|
|
590 |
c += 1 |
|
|
591 |
quer = """ |
|
|
592 |
Match (a:Entity {id:"%s"}), (b:Entity {id:"%s"}) |
|
|
593 |
MATCH (a)-[r:%s]->(b) |
|
|
594 |
WHERE "%s" in r.sent_id |
|
|
595 |
Return r; |
|
|
596 |
""" % (edge[':START_ID'], edge[':END_ID'], edge[':TYPE'], edge['sent_id:string[]'].split(';')[0]) |
|
|
597 |
f = graph.run(quer) |
|
|
598 |
if len(f.data()) == 0 and edge[':START_ID'] and edge[':END_ID']: |
|
|
599 |
quer = create_edge_query(edge, 'Entity', 'Entity') |
|
|
600 |
# subj_s = '[' |
|
|
601 |
# for i in edge['subject_sem_type:string[]'].split(';'): |
|
|
602 |
# subj_s += '"' + i + '"' + ',' |
|
|
603 |
# subj_s = subj_s[:-1] + ']' |
|
|
604 |
# obj_s = '[' |
|
|
605 |
# for i in edge['object_sem_type:string[]'].split(';'): |
|
|
606 |
# obj_s += '"' + i + '"' + ',' |
|
|
607 |
# obj_s = obj_s[:-1] + ']' |
|
|
608 |
# sent_s = '[' |
|
|
609 |
# for i in edge['sent_id:string[]'].split(';'): |
|
|
610 |
# sent_s += '"' + i + '"' + ',' |
|
|
611 |
# sent_s = sent_s[:-1] + ']' |
|
|
612 |
# neg_s = '[' |
|
|
613 |
# for i in edge['negation:string[]'].split(';'): |
|
|
614 |
# neg_s += '"' + i + '"' + ',' |
|
|
615 |
# neg_s = neg_s[:-1] + ']' |
|
|
616 |
# sent_res = '[' |
|
|
617 |
# for i in edge['resource:string[]'].split(';'): |
|
|
618 |
# sent_res += '"' + i + '"' + ',' |
|
|
619 |
# sent_res = sent_res[:-1] + ']' |
|
|
620 |
# quer = """ |
|
|
621 |
# Match (a:Entity {id:"%s"}), (b:Entity {id:"%s"}) |
|
|
622 |
# MERGE (a)-[r:%s]->(b) |
|
|
623 |
# ON MATCH SET r.subject_score = r.subject_score + %s, r.subject_sem_type = r.subject_sem_type + %s, |
|
|
624 |
# r.object_score = r.object_score + %s, r.object_sem_type = r.object_sem_type + %s, |
|
|
625 |
# r.sent_id = r.sent_id + %s, r.negation = r.negation + %s, r.resource = r.resource + %s |
|
|
626 |
# ON CREATE SET r.subject_score = %s, r.subject_sem_type = %s, |
|
|
627 |
# r.object_score = %s, r.object_sem_type = %s, |
|
|
628 |
# r.sent_id = %s, r.negation = %s, r.resource = %s |
|
|
629 |
# """ % (edge[':START_ID'], edge[':END_ID'], edge[':TYPE'], |
|
|
630 |
# str([int(i) for i in edge['subject_score:float[]'].split(';')]), subj_s, |
|
|
631 |
# str([int(i) for i in edge['object_score:float[]'].split(';')]), obj_s, |
|
|
632 |
# sent_s, neg_s, sent_res, str([int(i) for i in edge['subject_score:float[]'].split(';')]), subj_s, |
|
|
633 |
# str([int(i) for i in edge['object_score:float[]'].split(';')]), obj_s, |
|
|
634 |
# sent_s, neg_s, sent_res) |
|
|
635 |
# print quer |
|
|
636 |
# print '~'*50 |
|
|
637 |
# print edge |
|
|
638 |
# quer = """ |
|
|
639 |
# Match (a:Entity {id:"%s"}), (b:Entity {id:"%s"}) |
|
|
640 |
# MERGE (a)-[r:%s]->(b) |
|
|
641 |
# ON MATCH SET r.object_score = CASE WHEN NOT EXISTS(r.object_score) THEN %s ELSE r.object_score + %s END |
|
|
642 |
# """ % (edge[':START_ID'], edge[':END_ID'], edge[':TYPE'], |
|
|
643 |
# str([int(i) for i in edge['object_score:float[]'].split(';')]), str([int(i) for i in edge['object_score:float[]'].split(';')])) |
|
|
644 |
f = graph.run(quer) |
|
|
645 |
total_rel += f.stats()['relationships_created'] |
|
|
646 |
if c % 1000 == 0 and c > 999: |
|
|
647 |
time_log('Process: %d -- %0.2f %%' % (c, 100*c/float(len(relations_edges)))) |
|
|
648 |
time_log('#Relations :%d' % c) |
|
|
649 |
time_log('Finally added %d new relations!' % total_rel) |
|
|
650 |
|
|
|
651 |
def populate_mentioned_edges(graph, entity_pmc_edges): |
|
|
652 |
""" |
|
|
653 |
Function to create/merge the relation edges between existing entities. |
|
|
654 |
Input: |
|
|
655 |
- graph: py2neo.Graph, |
|
|
656 |
object representing the graph in neo4j. Using py2neo. |
|
|
657 |
- entity_pmc_edges: list, |
|
|
658 |
list of dics containing the attributes of each relation |
|
|
659 |
Output: None, populates the db. |
|
|
660 |
""" |
|
|
661 |
|
|
|
662 |
c = 0 |
|
|
663 |
total_rel = 0 |
|
|
664 |
for edge in entity_pmc_edges: |
|
|
665 |
c += 1 |
|
|
666 |
quer = """ |
|
|
667 |
Match (a:Entity {id:"%s"}), (b:Article {id:"%s"}) |
|
|
668 |
MATCH (a)-[r:%s]->(b) |
|
|
669 |
WHERE "%s" in r.sent_id |
|
|
670 |
Return r; |
|
|
671 |
""" % (edge[':START_ID'], edge[':END_ID'], edge[':TYPE'] , edge['sent_id:string[]']) |
|
|
672 |
f = graph.run(quer) |
|
|
673 |
if len(f.data()) == 0 and edge[':START_ID'] and edge[':END_ID']: |
|
|
674 |
quer = create_edge_query(edge, 'Entity', 'Article') |
|
|
675 |
# sent_s = '[' |
|
|
676 |
# for i in edge['sent_id:string[]'].split(';'): |
|
|
677 |
# sent_s += '"' + i + '"' + ',' |
|
|
678 |
# sent_s = sent_s[:-1] + ']' |
|
|
679 |
# sent_res = '[' |
|
|
680 |
# for i in edge['resource:string[]'].split(';'): |
|
|
681 |
# sent_res += '"' + i + '"' + ',' |
|
|
682 |
# sent_res = sent_res[:-1] + ']' |
|
|
683 |
# quer = """ |
|
|
684 |
# Match (a:Entity {id:"%s"}), (b:Article {id:"%s"}) |
|
|
685 |
# MERGE (a)-[r:MENTIONED_IN]->(b) |
|
|
686 |
# ON MATCH SET r.score = r.score + %s, r.sent_id = r.sent_id + %s, r.resource = r.resource + %s |
|
|
687 |
# ON CREATE SET r.score = %s, r.sent_id = %s, r.resource = %s |
|
|
688 |
# """ % (edge[':START_ID'], edge[':END_ID'], |
|
|
689 |
# str([int(i) for i in edge['score:float[]'].split(';')]), sent_s, sent_res, |
|
|
690 |
# str([int(i) for i in edge['score:float[]'].split(';')]), sent_s, sent_res) |
|
|
691 |
f = graph.run(quer) |
|
|
692 |
total_rel += f.stats()['relationships_created'] |
|
|
693 |
if c % 1000 == 0 and c>999: |
|
|
694 |
time_log("Process: %d -- %0.2f %%" % (c, 100*c/float(len(entity_pmc_edges)))) |
|
|
695 |
time_log('#Mentions: %d' % c) |
|
|
696 |
time_log('Finally added %d new mentions!' % total_rel) |
|
|
697 |
|
|
|
698 |
|
|
|
699 |
def populate_new_edges(graph, new_edges): |
|
|
700 |
""" |
|
|
701 |
Function to create/merge an unknwon type of edge. |
|
|
702 |
Input: |
|
|
703 |
- graph: py2neo.Graph, |
|
|
704 |
object representing the graph in neo4j. Using py2neo. |
|
|
705 |
- new_edges: list, |
|
|
706 |
list of dics containing the attributes of each relation |
|
|
707 |
Output: None, populates the db. |
|
|
708 |
""" |
|
|
709 |
|
|
|
710 |
c = 0 |
|
|
711 |
total_rel = 0 |
|
|
712 |
# field containing the type of the node for the subject |
|
|
713 |
sub_type = settings['load']['edges']['sub_type'] |
|
|
714 |
# field containing the type of the node for the object |
|
|
715 |
obj_type = settings['load']['edges']['obj_type'] |
|
|
716 |
for edge in new_edges: |
|
|
717 |
c += 1 |
|
|
718 |
quer = """ |
|
|
719 |
Match (a:%s {id:"%s"}), (b:%s {id:"%s"}) |
|
|
720 |
MATCH (a)-[r:%s]->(b) |
|
|
721 |
WHERE ("%s" in r.resource) |
|
|
722 |
Return r; |
|
|
723 |
""" % (sub_type, edge[':START_ID'], obj_type, edge[':END_ID'], edge[':TYPE'], settings['neo4j']['resource']) |
|
|
724 |
f = graph.run(quer) |
|
|
725 |
if len(f.data()) == 0 and edge[':START_ID'] and edge[':END_ID']: |
|
|
726 |
quer = create_edge_query(edge, sub_type, obj_type) |
|
|
727 |
# sent_res = '[' |
|
|
728 |
# for i in edge['resource:string[]'].split(';'): |
|
|
729 |
# sent_res += '"' + i + '"' + ',' |
|
|
730 |
# sent_res = sent_res[:-1] + ']' |
|
|
731 |
# quer = """ |
|
|
732 |
# MATCH (a:%s {id:"%s"}), (b:%s {id:"%s"}) |
|
|
733 |
# MERGE (a)-[r:%s]->(b) |
|
|
734 |
# ON MATCH SET r.resource = r.resource + %s |
|
|
735 |
# ON CREATE SET r.resource = %s |
|
|
736 |
# """ % (sub_type, edge[':START_ID'], obj_type, edge[':END_ID'], |
|
|
737 |
# edge[':TYPE'], sent_res, sent_res) |
|
|
738 |
# print quer |
|
|
739 |
f = graph.run(quer) |
|
|
740 |
total_rel += f.stats()['relationships_created'] |
|
|
741 |
if c % 1000 == 0 and c > 999: |
|
|
742 |
time_log("Process: %d -- %0.2f %%" % (c, 100*c/float(len(new_edges)))) |
|
|
743 |
time_log('#Edges: %d' % c) |
|
|
744 |
time_log('Finally added %d new edges!' % total_rel) |
|
|
745 |
|
|
|
746 |
|
|
|
747 |
def update_neo4j_parallel(results): |
|
|
748 |
|
|
|
749 |
""" |
|
|
750 |
Function to create/update a neo4j database according to the nodeg and edges |
|
|
751 |
generated by the create_neo4j_ functions. Change settings.yaml values in |
|
|
752 |
the neo4j group of variables to match your needs. |
|
|
753 |
Input: |
|
|
754 |
- results: |
|
|
755 |
json-style dictionary. Check create_neo4j_ functions output for |
|
|
756 |
details |
|
|
757 |
Output: None, creates/merges the nodes to the wanted database |
|
|
758 |
""" |
|
|
759 |
found = False |
|
|
760 |
for key in ['nodes', 'edges']: |
|
|
761 |
for item in results[key]: |
|
|
762 |
if item['values'] and item['type'] == 'Entity': |
|
|
763 |
found = True |
|
|
764 |
break |
|
|
765 |
if found: |
|
|
766 |
break |
|
|
767 |
if not(found): |
|
|
768 |
time_log('NO NODES/EDGES FOUND! MOVING ON!') |
|
|
769 |
return 1 |
|
|
770 |
#c = raw_input() |
|
|
771 |
#if c=='q': |
|
|
772 |
# exit() |
|
|
773 |
#else: |
|
|
774 |
# return |
|
|
775 |
try: |
|
|
776 |
N_THREADS = int(settings['num_cores']) |
|
|
777 |
except: |
|
|
778 |
N_THREADS = cpu_count() |
|
|
779 |
# results = {'nodes': [{'type': 'Entity', 'values': entities_nodes}, {'type': 'Article', 'values': articles_nodes}], |
|
|
780 |
# 'edges': [{'type': 'relation', 'values': relations_edges}, {'type': 'mention', 'values': entity_pmc_edges}] |
|
|
781 |
# } |
|
|
782 |
par_res = [{'nodes': [{} for j in results['nodes']], 'edges': [{} for j in results['edges']]} for i in xrange(N_THREADS)] |
|
|
783 |
# Create mini batches of the results |
|
|
784 |
for i, nodes in enumerate(results['nodes']): |
|
|
785 |
par_nodes = chunk_document_collection(nodes['values'], N_THREADS) |
|
|
786 |
for batch_num in xrange(N_THREADS): |
|
|
787 |
par_res[batch_num]['nodes'][i]['type'] = nodes['type'] |
|
|
788 |
par_res[batch_num]['nodes'][i]['values'] = par_nodes[batch_num] |
|
|
789 |
for i, edges in enumerate(results['edges']): |
|
|
790 |
par_edges = chunk_document_collection(edges['values'], N_THREADS) |
|
|
791 |
for batch_num in xrange(N_THREADS): |
|
|
792 |
par_res[batch_num]['edges'][i]['type'] = edges['type'] |
|
|
793 |
par_res[batch_num]['edges'][i]['values'] = par_edges[batch_num] |
|
|
794 |
len_col = " | ".join([str(len(b)) for b in par_edges]) |
|
|
795 |
time_log('Will break the collection into batches of: %s %s edges!' % (len_col, edges['type'])) |
|
|
796 |
pool = Pool(N_THREADS, maxtasksperchild=1) |
|
|
797 |
res = pool.map(update_neo4j_parallel_worker, par_res) |
|
|
798 |
pool.close() |
|
|
799 |
pool.join() |
|
|
800 |
del pool |
|
|
801 |
if sum(res) == N_THREADS: |
|
|
802 |
time_log('Completed parallel update of Neo4j!') |
|
|
803 |
else: |
|
|
804 |
time_log('Something wrong with the parallel execution?') |
|
|
805 |
time_log('Returned %d instead of %d' % (sum(res), N_THREADS)) |
|
|
806 |
return 1 |
|
|
807 |
|
|
|
808 |
def update_neo4j_parallel_worker(results): |
|
|
809 |
""" |
|
|
810 |
Just a worker interface for the different Neo4j update |
|
|
811 |
executions. |
|
|
812 |
Input: |
|
|
813 |
- results: |
|
|
814 |
json-style dictionary. Check create_neo4j_ functions output for |
|
|
815 |
details |
|
|
816 |
Output: |
|
|
817 |
- res : dic, |
|
|
818 |
Output: None, creates/merges the nodes to the wanted database |
|
|
819 |
""" |
|
|
820 |
# Update Neo4j as usual |
|
|
821 |
from pprint import pprint |
|
|
822 |
#pprint(results) |
|
|
823 |
#print('~'*50) |
|
|
824 |
update_neo4j(results) |
|
|
825 |
# Return 1 for everything is ok |
|
|
826 |
return 1 |
|
|
827 |
|
|
|
828 |
|
|
|
829 |
def update_neo4j(results): |
|
|
830 |
|
|
|
831 |
""" |
|
|
832 |
Function to create/update a neo4j database according to the nodeg and edges |
|
|
833 |
generated by the create_neo4j_ functions. Change settings.yaml values in |
|
|
834 |
the neo4j group of variables to match your needs. |
|
|
835 |
Input: |
|
|
836 |
- results: |
|
|
837 |
json-style dictionary. Check create_neo4j_ functions output for |
|
|
838 |
details |
|
|
839 |
Output: None, creates/merges the nodes to the wanted database |
|
|
840 |
""" |
|
|
841 |
host = settings['neo4j']['host'] |
|
|
842 |
port = settings['neo4j']['port'] |
|
|
843 |
user = settings['neo4j']['user'] |
|
|
844 |
password = settings['neo4j']['password'] |
|
|
845 |
try: |
|
|
846 |
graph = py2neo.Graph(host=host, port=port, user=user, password=password) |
|
|
847 |
except Exception, e: |
|
|
848 |
#time_log(e) |
|
|
849 |
#time_log("Couldn't connect to db! Check settings!") |
|
|
850 |
exit(2) |
|
|
851 |
for nodes in results['nodes']: |
|
|
852 |
populate_nodes(graph, nodes['values'], nodes['type']) |
|
|
853 |
for edges in results['edges']: |
|
|
854 |
if edges['type'] == 'relation': |
|
|
855 |
time_log('~~~~~~ Will create Relations Between Entities ~~~~~~') |
|
|
856 |
populate_relation_edges(graph, edges['values']) |
|
|
857 |
elif edges['type'] == 'mention': |
|
|
858 |
time_log('~~~~~~ Will create Mentioned In ~~~~~~') |
|
|
859 |
populate_mentioned_edges(graph, edges['values']) |
|
|
860 |
elif edges['type'] == 'NEW': |
|
|
861 |
time_log('~~~~~~ Will create new-type of edges~~~~~~') |
|
|
862 |
populate_new_edges(graph, edges['values']) |
|
|
863 |
else: |
|
|
864 |
time_log('Specific node type not handled! You have to update the code!') |
|
|
865 |
raise NotImplementedError |
|
|
866 |
|
|
|
867 |
|
|
|
868 |
def update_mongo_sentences(json_): |
|
|
869 |
""" |
|
|
870 |
Helper function to save the sentences found in the enriched articles in |
|
|
871 |
mongodb. Connecting to a collection according to settings and then |
|
|
872 |
creating/updating the articles with the sentences found in them. |
|
|
873 |
Input: |
|
|
874 |
- json_: dic, |
|
|
875 |
json-style dictionary generated from the semrep extractor in the |
|
|
876 |
previous phase. Must make sure that there is a field named as indicated |
|
|
877 |
in json_['out']['json']['json_doc_field'], where the documents/articles |
|
|
878 |
are stored and each document/article has a field sents, as expected |
|
|
879 |
in the output of the semrep extractor. |
|
|
880 |
Output: |
|
|
881 |
None, just populates the database |
|
|
882 |
|
|
|
883 |
""" |
|
|
884 |
uri = settings['mongo_sentences']['uri'] |
|
|
885 |
db_name = settings['mongo_sentences']['db'] |
|
|
886 |
collection_name = settings['mongo_sentences']['collection'] |
|
|
887 |
client = pymongo.MongoClient(uri) |
|
|
888 |
db = client[db_name] |
|
|
889 |
collection = db[collection_name] |
|
|
890 |
new = 0 |
|
|
891 |
upd = 0 |
|
|
892 |
docs = json_[settings['out']['json']['itemfield']] |
|
|
893 |
for i, doc in enumerate(docs): |
|
|
894 |
cursor = collection.find({'id': doc['id']}) |
|
|
895 |
sents = [{'sent_id': sent['sent_id'], 'text': sent['sent_text']} for sent in doc['sents']] |
|
|
896 |
if cursor.count() == 0: |
|
|
897 |
collection.insert_one({'id': doc['id'], 'sentences': sents}) |
|
|
898 |
new += 1 |
|
|
899 |
else: |
|
|
900 |
for mongo_doc in cursor: |
|
|
901 |
cur_sent = mongo_doc['sentences'] |
|
|
902 |
cur_ids = [s['sent_id'] for s in cur_sent] |
|
|
903 |
new_sent = [s for s in sents if not(s['sent_id'] in cur_ids)] |
|
|
904 |
if new_sent: |
|
|
905 |
cur_sent.extend(new_sent) |
|
|
906 |
mongo_doc['sentences'] = cur_sent |
|
|
907 |
collection.replace_one({'id': doc['id']}, mongo_doc) |
|
|
908 |
upd += 1 |
|
|
909 |
if i % 100 == 0 and i > 99: |
|
|
910 |
time_log("Process: %d -- %0.2f %%" % (i, 100*i/float(len(docs)))) |
|
|
911 |
time_log('Finally updated %d -- inserted %d documents!' % (upd, new)) |
|
|
912 |
|
|
|
913 |
|
|
|
914 |
|
|
|
915 |
def save_mongo(json_): |
|
|
916 |
""" |
|
|
917 |
Helper function to save edges/documents to mongo. |
|
|
918 |
Input: |
|
|
919 |
- json_: dic, |
|
|
920 |
json-style dictionary generated from the transformation modules in the |
|
|
921 |
previous phase. Must make sure that there is a field named as indicated |
|
|
922 |
in settings['out']['json']['json_doc_field'], where the edges/docs |
|
|
923 |
are stored. Specifically for the articles, they are replaced if another |
|
|
924 |
item with the same id is found in the collection. |
|
|
925 |
Output: |
|
|
926 |
None, just populates the database |
|
|
927 |
|
|
|
928 |
""" |
|
|
929 |
uri = settings['out']['mongo']['uri'] |
|
|
930 |
db_name = settings['out']['mongo']['db'] |
|
|
931 |
collection_name = settings['out']['mongo']['collection'] |
|
|
932 |
client = pymongo.MongoClient(uri) |
|
|
933 |
db = client[db_name] |
|
|
934 |
collection = db[collection_name] |
|
|
935 |
# Output Idfield |
|
|
936 |
idfield = settings['out']['json']['json_id_field'] |
|
|
937 |
docs = json_[settings['out']['json']['itemfield']] |
|
|
938 |
for i, doc in enumerate(docs): |
|
|
939 |
if idfield in doc: |
|
|
940 |
result = collection.replace_one({'id': str(doc[idfield])}, doc, True) |
|
|
941 |
elif 'p' in doc: |
|
|
942 |
result = collection.insert_one(doc) |
|
|
943 |
else: |
|
|
944 |
time_log('Unknown type to persist to mongo') |
|
|
945 |
raise NotImplementedError |
|
|
946 |
if i % 100 == 0 and i > 99: |
|
|
947 |
time_log("Process: %d -- %0.2f %%" % (i, 100*i/float(len(docs)))) |
|
|
948 |
return 1 |