[302778]: / caa_sheet_src / patient.py

Download this file

211 lines (171 with data), 9.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import numpy as np
import re
import os
import usaddress
import pandas as pd
import nltk
import sys
import copy
import request_handling_aws
US_STATES = {"AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DC", "DE", "FL", "GA",
"HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME", "MD",
"MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH", "NJ",
"NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI", "SC",
"SD", "TN", "TX", "UT", "VT", "VA", "WA", "WV", "WI", "WY"}
US_CITY_CORRECTS = {"st louis":"saint louis"}
TERMINOLOGY_CORRECTS = {"street": "st", "road":"rd"}
class Patient:
def __init__(self,block_markers):
self.fields = {"SEX", "AGE", "DOB", "PHONE_OR_FAX", "EMAIL", "ADDRESS", "NAME", "po_box", "address","street"}
self.pat_dic = {}
self.insurance_df = pd.read_excel('./Insurance Companies_Updated.xlsx')
self.insurance_alias = {'uhc':'united healthcare',}
self.sheet_name = "Advocate Illinois Masonic Medical Center"
self.coverage_blocks = {'PRIMARY PLAN NAME/ADDRESS'}
self.update_keys(block_markers)
def process_gen_info(self,text_block):
for key, value in text_block.items():
# print (key, value)
if len(value) > 1:
if key == '<START>':
self.pat_dic['START_name'] = self.sheet_name
block = self.clean_block(value)
print("START ADDRESS:\n")
self.get_address(value,'START')
elif key == 'PATIENT NAME/ADDRESS':
# block = self.clean_block(value)
self.process_spaced(value,key)
key_map = request_handling_aws.get_comprehend(value)
self.process_comprehend_dic(key_map, key)
self.get_address(value, key)
elif key == 'PRIMARY PLAN NAME/ADDRESS':
block = self.clean_block(value)
print("PRIMARY PLAN CLEAN", block)
key_map = request_handling_aws.get_comprehend(block)
self.process_comprehend_dic(key_map, key)
self.get_address(block,key)
elif key == 'SUBSCRIBER NAME/ADDRESS':
block = self.clean_block(value)
print("SUBSCRIBER CLEAN", block)
key_map = request_handling_aws.get_comprehend(block)
self.process_comprehend_dic(key_map, key)
self.process_spaced(block, key)
self.get_address(block,key)
self.get_insurance_medcode()
def process_coloned(self,text_block,key):
for line in text_block:
curr_line = line.strip().lower().split(':')
if any(field == curr_line[0] for field in self.fields) and len(curr_line)>1 and '' not in curr_line:
if key != '<START>':
self.pat_dic[key+ '_' + curr_line[0].strip()] = curr_line[1].strip()
else:
self.pat_dic[curr_line[0].strip()] = curr_line[1].strip()
def process_spaced(self,text_block,key):
for line in text_block:
curr_line = copy.deepcopy(line)
while len(curr_line.split())>1:
if any(field in curr_line for field in self.fields):
for field in self.fields:
if field in curr_line:
val_start = curr_line.find(field) + len(field)
if val_start < len(curr_line):
field_val = curr_line[val_start:].split()[0]
self.pat_dic[key + '_' + field.lower()] = field_val
curr_line = curr_line[(curr_line.find(field_val) + len(field_val) + 1):]
else:
field_val = ""
curr_line = ""
else:
field_val = ""
curr_line = ""
def process_comprehend_dic(self, comprehend_dict, key):
# checked = set()
# for field in self.fields:
# if field in comprehend_dict.keys() and field not in checked:
# self.pat_dic[key+ '_' + field.lower()] = comprehend_dict[field]
# checked.add(field)
# print(comprehend_dict)
types = set([entity['Type'] for entity in comprehend_dict])
count_map = {type:0 for type in types}
for entity in comprehend_dict:
for field in self.fields:
if field in entity["Type"] and count_map[entity["Type"]] == 0:
self.pat_dic[key+ '_' + field.lower()] = entity["Text"]
count_map[entity["Type"]] += 1
if field in entity["Type"] and count_map[entity["Type"]] > 0:
self.pat_dic[key+ '_' + field.lower() + "_" + str(count_map[entity["Type"]])] = entity["Text"]
count_map[entity["Type"]] += 1
print(comprehend_dict)
def get_address(self,text_block,key):
block_string = ' '.join(text_block).lower()
po_pattern = re.compile(r'(po box)\s*\d+')
po_box = re.search(po_pattern, block_string)
if po_box != None:
self.pat_dic[key+ '_' + 'po_box'] = po_box[0].split()[-1]
add_pattern = re.compile(r'([A-Z,a-z,0-9][^.!\-:;,\s]+)[,|\s]+([A-Z,a-z][^.!\-:;]+?)\s*(\d{5})')
addresses = []
for line in text_block:
addresses.append(re.findall(add_pattern, line.lower()))
for matches in addresses:
if len(matches) > 0:
try:
tags = usaddress.tag(' '.join(matches[0]))[0]
if 'PlaceName' in tags.keys() and 'StateName' in tags.keys() and tags['StateName'].upper() in US_STATES:
self.pat_dic[key+ '_' + 'address'] = ' '.join(matches[0])
self.pat_dic[key+'_' + 'PlaceName'] = tags['PlaceName']
self.pat_dic[key+'_' + 'StateName'] = tags['StateName']
self.pat_dic[key+'_' + 'ZipCode'] = tags['ZipCode']
except:
print ("Unexpected error:", sys.exc_info()[0])
for matches in text_block:
if len(matches) > 0:
try:
main_tags = usaddress.tag(matches.lower())
tags = main_tags[0]
if len(main_tags) > 0:
if "StreetName" in tags.keys() and "AddressNumber" in tags.keys() and main_tags[1] == 'Street Address' and ('SubaddressType' not in tags.keys() and 'Recipient' not in tags.keys()):
if tags["AddressNumber"].isdigit():
print(tags)
self.pat_dic[key+ '_' + 'street'] = matches.lower()
except:
print ("Unexpected error:", sys.exc_info()[0])
def update_keys(self,block_markers):
for key in self.fields:
for pref in block_markers:
if pref != '<START>':
self.pat_dic[pref+ '_' + key] = None
else:
self.pat_dic[key] = None
def get_insurance_medcode(self):
for cov_block in self.coverage_blocks:
print (cov_block, self.pat_dic[cov_block+ '_' + 'po_box'],self.pat_dic[cov_block + '_' + 'address'])
if self.pat_dic[cov_block + '_' + 'address'] != None and (self.pat_dic[cov_block+ '_' + 'po_box'] != None or self.pat_dic[cov_block+ '_' + 'street'] != None):
tags_add = usaddress.tag(self.pat_dic[cov_block + '_' + 'address'])[0]
for word, replacement in US_CITY_CORRECTS.items():
tags_add['PlaceName'] = tags_add['PlaceName'].replace(word, replacement)
print(tags_add)
if self.pat_dic[cov_block+ '_' + 'po_box'] != None:
companies_df = self.insurance_df.loc[(self.insurance_df['Address'] == "PO BOX " + self.pat_dic[cov_block + '_' + 'po_box']) &
(self.insurance_df['City'] == tags_add['PlaceName'].upper()) &
(self.insurance_df['St'] == tags_add['StateName'].upper())]
elif self.pat_dic[cov_block+ '_' + 'street'] != None:
for word, replacement in TERMINOLOGY_CORRECTS.items():
self.pat_dic[cov_block + '_' + 'street'] = self.pat_dic[cov_block + '_' + 'street'].replace(word, replacement)
companies_df = self.insurance_df.loc[(self.insurance_df['Address'] == self.pat_dic[cov_block + '_' + 'street'].upper()) &
(self.insurance_df['City'] == tags_add['PlaceName'].upper()) &
(self.insurance_df['St'] == tags_add['StateName'].upper())]
if not companies_df.empty:
self.pat_dic[cov_block + "_mednetcode"] = companies_df.iloc[0]['MedNetCode']
else:
self.pat_dic[cov_block + "_mednetcode"] = None
else:
self.pat_dic[cov_block + "_mednetcode"] = None
# print(self.pat_dic[cov_block + "_mednetcode"])
def clean_block(self, text_block):
cleaned_block = []
for line in text_block:
if len(line) > 3:
cleaned_block.append(line)
return cleaned_block
def csv_rep(self):
return self.pat_dic