|
a |
|
b/code/dnc_code/DNC/controller.py |
|
|
1 |
# Read and Write Head controller based on LSTM. |
|
|
2 |
# Note : Derived from GitHub user loudinthecloud's NTM implementation |
|
|
3 |
|
|
|
4 |
import torch |
|
|
5 |
from torch import nn |
|
|
6 |
from torch.nn import Parameter |
|
|
7 |
import numpy as np |
|
|
8 |
|
|
|
9 |
class controller(nn.Module): # LSTM Controller |
|
|
10 |
def __init__(self, num_inputs, num_outputs, num_layers): |
|
|
11 |
super(controller, self).__init__() |
|
|
12 |
|
|
|
13 |
self.num_inputs = num_inputs |
|
|
14 |
self.num_outputs = num_outputs |
|
|
15 |
self.num_layers = num_layers |
|
|
16 |
|
|
|
17 |
self.lstm_network = nn.LSTM(input_size = self.num_inputs, hidden_size = self.num_outputs, num_layers = self.num_layers) |
|
|
18 |
|
|
|
19 |
# Parameters of the LSTM. Hidden state serves as the output of our network |
|
|
20 |
self.h_init = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) # Hidden state initialization |
|
|
21 |
self.c_init = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) # C variable initialization |
|
|
22 |
|
|
|
23 |
# Initialization of the LSTM parameters. |
|
|
24 |
for p in self.lstm_network.parameters(): |
|
|
25 |
if p.dim() == 1: |
|
|
26 |
nn.init.constant_(p, 0) |
|
|
27 |
else: |
|
|
28 |
stdev = 5 / (np.sqrt(self.num_inputs + self.num_outputs)) # I don't know why we multiplied 5 |
|
|
29 |
nn.init.uniform_(p, -stdev, stdev) |
|
|
30 |
|
|
|
31 |
def create_hidden_state(self, batch_size): # Output : (num_layers x batch_size x num_outputs) |
|
|
32 |
h = self.h_init.clone().repeat(1, batch_size, 1) |
|
|
33 |
c = self.c_init.clone().repeat(1, batch_size, 1) |
|
|
34 |
return h, c |
|
|
35 |
|
|
|
36 |
def network_size(self): |
|
|
37 |
return self.num_inputs, self.num_outputs |
|
|
38 |
|
|
|
39 |
def forward(self, inp, prev_state): |
|
|
40 |
inp = inp.unsqueeze(0) # inp dimension after unsqueeze : (1 x inp.shape) |
|
|
41 |
output, state = self.lstm_network(inp, prev_state) # Input to LSTM must be of shape (seq_len x batch_size x input_size) in Pytorch. Here, seq_len = 1 |
|
|
42 |
return output.squeeze(0), state |
|
|
43 |
|
|
|
44 |
class backward_controller(nn.Module): # Backward LSTM to make DNC Bi-Directional |
|
|
45 |
def __init__(self, num_inputs, num_outputs, num_layers): |
|
|
46 |
super(backward_controller, self).__init__() |
|
|
47 |
|
|
|
48 |
self.num_inputs = num_inputs |
|
|
49 |
self.num_outputs = num_outputs |
|
|
50 |
self.num_layers = num_layers |
|
|
51 |
|
|
|
52 |
self.lstm_network = nn.LSTM(input_size = self.num_inputs, hidden_size = self.num_outputs, num_layers = self.num_layers) |
|
|
53 |
|
|
|
54 |
# Parameters of the LSTM. Hidden state serves as the output of our network |
|
|
55 |
self.h_init = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) # Hidden state initialization |
|
|
56 |
self.c_init = Parameter(torch.randn(self.num_layers, 1, self.num_outputs) * 0.05) # C variable initialization |
|
|
57 |
|
|
|
58 |
# Initialization of the LSTM parameters. |
|
|
59 |
for p in self.lstm_network.parameters(): |
|
|
60 |
if p.dim() == 1: |
|
|
61 |
nn.init.constant_(p, 0) |
|
|
62 |
else: |
|
|
63 |
stdev = 5 / (np.sqrt(self.num_inputs + self.num_outputs)) # I don't know why we multiplied 5 |
|
|
64 |
nn.init.uniform_(p, -stdev, stdev) |
|
|
65 |
|
|
|
66 |
def create_hidden_state(self, batch_size): # Output : (num_layers x batch_size x num_outputs) |
|
|
67 |
h = self.h_init.clone().repeat(1, batch_size, 1) |
|
|
68 |
c = self.c_init.clone().repeat(1, batch_size, 1) |
|
|
69 |
return h, c |
|
|
70 |
|
|
|
71 |
def network_size(self): |
|
|
72 |
return self.num_inputs, self.num_outputs |
|
|
73 |
|
|
|
74 |
def forward(self, inp, prev_states): # inp dimension: (seq_len x batch_size x input_size) |
|
|
75 |
inp = inp[torch.arange(inp.shape[0]-1, -1, -1), :, :] # Reversing the input for backward direction |
|
|
76 |
output, state = self.lstm_network(inp, prev_states) # Input to LSTM must be of shape (seq_len x batch_size x input_size) in Pytorch. Here, seq_len = 1 |
|
|
77 |
# output = output[torch.arange(output.shape[0]-1, -1, -1), :, :] # Reversing the 'output'. |
|
|
78 |
return output, state # Output size is (seq_len x batch x hidden_size) as per documentation |