##Converting the MIMIC BERT weights
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
import logging
logging.basicConfig(level=logging.INFO)
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
config = BertConfig.from_json_file(bert_config_file)
print("Building PyTorch model from configuration: {}".format(str(config)))
model = BertForPreTraining(config)
# Load weights from tf checkpoint
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == '__main__':
MIMIC_BERT_PRETRAINED_PATH = '/content/drive/Shared drives/BioNLP/project/medical_data/embeddings/MIMIC_BERT/'
MIMIC_BERT_TF_PATH = MIMIC_BERT_PRETRAINED_PATH + "bert_model.ckpt"
MIMIC_BERT_CONFIG_PATH = MIMIC_BERT_PRETRAINED_PATH + "config.json"
MIMIC_BERT_PYTORCH_MODEL_PATH = MIMIC_BERT_PRETRAINED_PATH + "pytorch_model.bin"
convert_tf_checkpoint_to_pytorch(MIMIC_BERT_TF_PATH,MIMIC_BERT_CONFIG_PATH,MIMIC_BERT_PYTORCH_MODEL_PATH)