133 lines (132 with data), 4.3 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"bot : Hi There! I am a medical chatbot. You can begin conversation by typing in a message and pressing enter.\n",
"\n",
"You said: i have a headache\n",
"\n",
"- what kind of headache do you have : 1. Migrane headache - intense throbbing pain on just one side of the head. 2. Cluster headaches - severe and recurrent headaches 3. Tension Headache - Ocassional;\n",
"bot : Hi There! I am a medical chatbot. You can begin conversation by typing in a message and pressing enter.\n",
"\n",
"Your last instruction was unclear to me\n",
"bot : Hi There! I am a medical chatbot. You can begin conversation by typing in a message and pressing enter.\n",
"\n",
"Your last instruction was unclear to me\n",
"bot : Hi There! I am a medical chatbot. You can begin conversation by typing in a message and pressing enter.\n",
"\n"
]
}
],
"source": [
"from flask import Flask, render_template, request\n",
"from chatterbot import ChatBot\n",
"from chatterbot.trainers import ChatterBotCorpusTrainer\n",
"import os\n",
"from gtts import gTTS\n",
"import speech_recognition as sr\n",
"import os\n",
"import re\n",
"import webbrowser\n",
"import smtplib\n",
"import requests\n",
"\n",
"\n",
"from chatterbot import ChatBot\n",
"from chatterbot.trainers import ListTrainer\n",
"\n",
"filenumber=int(os.listdir('saved_conversations')[-1])\n",
"filenumber=filenumber+1\n",
"file= open('saved_conversations/'+str(filenumber),\"w+\")\n",
"file.write('bot : Hi There! I am a medical chatbot. You can begin conversation by typing in a message and pressing enter.\\n')\n",
"file.close()\n",
"\n",
"\n",
"english_bot = ChatBot('Bot',\n",
" storage_adapter='chatterbot.storage.SQLStorageAdapter',\n",
" logic_adapters=[\n",
" {\n",
" 'import_path': 'chatterbot.logic.BestMatch'\n",
" },\n",
" \n",
"],\n",
"trainer='chatterbot.trainers.ListTrainer')\n",
"english_bot.set_trainer(ListTrainer)\n",
"\n",
"\n",
"def myCommand():\n",
" r = sr.Recognizer()\n",
"\n",
" with sr.Microphone() as source:\n",
" print('bot : Hi There! I am a medical chatbot. You can begin conversation by typing in a message and pressing enter.\\n')\n",
" r.pause_treshold = 1\n",
" r.adjust_for_ambient_noise(source, duration = 1)\n",
" audio = r.listen(source)\t\n",
"\n",
" try:\n",
" command = r.recognize_google(audio).lower()\n",
" print('You said: '+ command + '\\n')\n",
"\n",
" except sr.UnknownValueError:\n",
" print('Your last instruction was unclear to me')\n",
" command = myCommand();\n",
"\n",
" return command \n",
"\n",
"\n",
"def get_bot_response(command):\n",
" #userText = request.args.get('msg')\n",
" response = str(english_bot.get_response(command))\n",
"\n",
" appendfile=os.listdir('saved_conversations')[-1]\n",
" appendfile= open('saved_conversations/'+str(filenumber),\"a\")\n",
" appendfile.write('user : '+command+'\\n')\n",
" appendfile.write('bot : '+response+'\\n')\n",
" appendfile.close()\n",
" return response\n",
"\n",
"\n",
"while True:\n",
" value=get_bot_response(myCommand())\n",
" print(value)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}