import os
import pandas as pd
from imblearn.under_sampling import RandomUnderSampler
from optparse import OptionParser
from sklearn.model_selection import train_test_split
#This will make a train/validation/test split 80/20/20
def resample_data(t):
t = t[['HADM_ID', 'text', 'readm_30d']]
label = t.pop('readm_30d')
rus = RandomUnderSampler(random_state=42)
X, y = rus.fit_resample(t, label.astype('category'))
ids = pd.Series(X[:, 0])
texts = pd.Series(X[:, 1])
df = pd.DataFrame()
df['readm_30d'] = pd.Series(y)
df['HADM_ID'] = ids
df['text'] = texts
return df
def split_data(admissions, ratio):
# Do some limited preprocessing
X = admissions[['HADM_ID', 'text']]
y = admissions['readm_30d']
# Create a stratified train test split to preserver distribution.
X_train, X_test, y_train, y_test = train_test_split(X, y,stratify=y, test_size=ratio, random_state=42)
train = pd.merge(X_train, y_train, left_index=True, right_index=True)
test = pd.merge(X_test, y_test, left_index=True, right_index=True)
return train, test
def main(input_data, output_dir, ratio):
# read the dataset from file.
print("Reading raw data")
data = pd.read_csv(input_data)
# split into training and testing
print("Splitting into training and testing")
train, test = split_data(data, ratio)
# split into train and validation
print("spliting train into train and validation")
train, validation = split_data(train, ratio)
# undersample the train
print("Undersampling the train")
train = resample_data(train)
# now save the files
if not os.path.exists(output_dir):
os.makedirs(output_dir)
train.to_csv(os.path.join(output_dir, "train.csv"), index=None)
test.to_csv(os.path.join(output_dir, "test.csv"), index=None)
validation.to_csv(os.path.join(output_dir, "validation.csv"), index=None)
if __name__ == "__main__":
parser = OptionParser()
parser.add_option("--input", help="specify the input data")
parser.add_option("--output_dir", help="specify the output location")
parser.add_option("--ratio", help="specify the proportion to keep for testing", type="float")
(options, args) = parser.parse_args()
# load the data
main(options.input, options.output_dir, options.ratio)