Diff of /medicalbert/cliparser.py [000000] .. [d129b2]

Switch to unified view

a b/medicalbert/cliparser.py
1
import argparse
2
3
#All the parameters that we can set.
4
# NB: not all params are used by every classifier.
5
def setup_parser():
6
    parser = argparse.ArgumentParser()
7
8
    parser.add_argument("--train_from_checkpoint",
9
                        default=None,
10
                        type=str,
11
                        help="Continue training from a saved model.")
12
13
    parser.add_argument("--save_tokenized_text",
14
                        action='store_true',
15
                        help="this will output the tokenized process text into a CSV format")
16
    parser.add_argument("--train",
17
                        action='store_true',
18
                        help="Whether to run training.")
19
    parser.add_argument("--output_embeddings",
20
                        action='store_true',
21
                        help="Will take in a classifier and use the underlying model to output the token embeddings")
22
    parser.add_argument("--eval",
23
                        action='store_true',
24
                        help="Whether to run eval on the dev set.")
25
    parser.add_argument("--use_model",
26
                        default=None,
27
                        type=str,
28
                        help="Use this model for evaluations")
29
    parser.add_argument("--data_dir",
30
                        default=None,
31
                        type=str,
32
                        help="location of input data")
33
    parser.add_argument("--output_dir",
34
                        default=None,
35
                        type=str,
36
                        help="location of output")
37
    parser.add_argument("--training_data",
38
                        default=None,
39
                        type=str,
40
                        help="name of training file")
41
    parser.add_argument("--validation_metric",
42
                        default=None,
43
                        type=str,
44
                        help="metric used to select the best validation checkpoint for testing.")
45
    parser.add_argument("--valid_data",
46
                        default=None,
47
                        type=str,
48
                        help="name of validation file")
49
    parser.add_argument("--evaluator",
50
                        default=None,
51
                        type=str,
52
                        help="evaluation class to use")
53
    parser.add_argument("--seed",
54
                        default=None,
55
                        type=int,
56
                        help="random seed")
57
    parser.add_argument("--device",
58
                        default=None,
59
                        type=str,
60
                        help="cpu or cuda")
61
    parser.add_argument("--experiment_name",
62
                        default=None,
63
                        type=str,
64
                        help="name of the experiment")
65
    parser.add_argument("--learning_rate",
66
                        default=None,
67
                        type=float,
68
                        help="learning_rate")
69
    parser.add_argument("--pretrained_model",
70
                        default=None,
71
                        type=str,
72
                        help="pretrained model to train upon.")
73
    parser.add_argument("--num_sections",
74
                        default=None,
75
                        type=int,
76
                        help="chunks of text")
77
    parser.add_argument("--tokenizer",
78
                        default=None,
79
                        type=str,
80
                        help="tokenizer model to use")
81
    parser.add_argument("--num_train_examples",
82
                        default=None,
83
                        type=int,
84
                        help="number of training examples")
85
    parser.add_argument("--target",
86
                        default=None,
87
                        type=str,
88
                        help="target column")
89
    parser.add_argument("--classifier",
90
                        default=None,
91
                        type=str,
92
                        help="classifier to use")
93
    parser.add_argument("--epochs",
94
                        default=None,
95
                        type=int,
96
                        help="Number of epochs to train for")
97
    parser.add_argument("--train_batch_size",
98
                        default=None,
99
                        type=int,
100
                        help="batch size during training phase")
101
    parser.add_argument("--gradient_accumulation_steps",
102
                        default=None,
103
                        type=int,
104
                        help="used to reduce GPU memory footprint")
105
    parser.add_argument("--datareader",
106
                        default=None,
107
                        type=str,
108
                        help="approach to reading the data from files.")
109
    parser.add_argument("--vocab_size",
110
                        default=None,
111
                        type=int,
112
                        help="Size of vocabulary.")
113
    parser.add_argument("--embed_size",
114
                        default=None,
115
                        type=int,
116
                        help="Size of vocabulary.")
117
    parser.add_argument("--layer",
118
                        default=None,
119
                        type=int,
120
                        help="If the classifier only uses parts of a model then use this")
121
    parser.add_argument("--max_sequence_length",
122
                        default=None,
123
                        type=int,
124
                        help="maximum sequence length, each document will be truncated to this length.")
125
    parser.add_argument("--num_layers",
126
                        default=None,
127
                        type=int,
128
                        help="The number of encoding layers for a BERT model to keep.")
129
    return parser.parse_args()