|
a |
|
b/process_mimic.py |
|
|
1 |
# This script processes MIMIC-III dataset and builds a binary matrix or a count matrix depending on your input. |
|
|
2 |
# The output matrix is a Numpy matrix of type float32, and suitable for training medGAN. |
|
|
3 |
# Written by Edward Choi (mp2893@gatech.edu) |
|
|
4 |
# Usage: Put this script to the folder where MIMIC-III CSV files are located. Then execute the below command. |
|
|
5 |
# python process_mimic.py ADMISSIONS.csv DIAGNOSES_ICD.csv <output file> <"binary"|"count"> |
|
|
6 |
# Note that the last argument "binary/count" determines whether you want to create a binary matrix or a count matrix. |
|
|
7 |
|
|
|
8 |
# Output files |
|
|
9 |
# <output file>.pids: cPickled Python list of unique Patient IDs. Used for intermediate processing |
|
|
10 |
# <output file>.matrix: Numpy float32 matrix. Each row corresponds to a patient. Each column corresponds to a ICD9 diagnosis code. |
|
|
11 |
# <output file>.types: cPickled Python dictionary that maps string diagnosis codes to integer diagnosis codes. |
|
|
12 |
|
|
|
13 |
import sys |
|
|
14 |
import _pickle as pickle |
|
|
15 |
import numpy as np |
|
|
16 |
from datetime import datetime |
|
|
17 |
|
|
|
18 |
def convert_to_icd9(dxStr): |
|
|
19 |
if dxStr.startswith('E'): |
|
|
20 |
if len(dxStr) > 4: return dxStr[:4] + '.' + dxStr[4:] |
|
|
21 |
else: return dxStr |
|
|
22 |
else: |
|
|
23 |
if len(dxStr) > 3: return dxStr[:3] + '.' + dxStr[3:] |
|
|
24 |
else: return dxStr |
|
|
25 |
|
|
|
26 |
def convert_to_3digit_icd9(dxStr): |
|
|
27 |
if dxStr.startswith('E'): |
|
|
28 |
if len(dxStr) > 4: return dxStr[:4] |
|
|
29 |
else: return dxStr |
|
|
30 |
else: |
|
|
31 |
if len(dxStr) > 3: return dxStr[:3] |
|
|
32 |
else: return dxStr |
|
|
33 |
|
|
|
34 |
if __name__ == '__main__': |
|
|
35 |
admissionFile = sys.argv[1] |
|
|
36 |
diagnosisFile = sys.argv[2] |
|
|
37 |
outFile = sys.argv[3] |
|
|
38 |
binary_count = sys.argv[4] |
|
|
39 |
|
|
|
40 |
if binary_count != 'binary' and binary_count != 'count': |
|
|
41 |
print('You must choose either binary or count.') |
|
|
42 |
sys.exit() |
|
|
43 |
|
|
|
44 |
print('Building pid-admission mapping, admission-date mapping') |
|
|
45 |
pidAdmMap = {} |
|
|
46 |
admDateMap = {} |
|
|
47 |
infd = open(admissionFile, 'r') |
|
|
48 |
infd.readline() |
|
|
49 |
for line in infd: |
|
|
50 |
tokens = line.strip().split(',') |
|
|
51 |
pid = int(tokens[1]) |
|
|
52 |
admId = int(tokens[2]) |
|
|
53 |
admTime = datetime.strptime(tokens[3], '%Y-%m-%d %H:%M:%S') |
|
|
54 |
admDateMap[admId] = admTime |
|
|
55 |
if pid in pidAdmMap: pidAdmMap[pid].append(admId) |
|
|
56 |
else: pidAdmMap[pid] = [admId] |
|
|
57 |
infd.close() |
|
|
58 |
|
|
|
59 |
print('Building admission-dxList mapping') |
|
|
60 |
admDxMap = {} |
|
|
61 |
infd = open(diagnosisFile, 'r') |
|
|
62 |
infd.readline() |
|
|
63 |
for line in infd: |
|
|
64 |
tokens = line.strip().split(',') |
|
|
65 |
admId = int(tokens[2]) |
|
|
66 |
#dxStr = 'D_' + convert_to_icd9(tokens[4][1:-1]) ############## Uncomment this line and comment the line below, if you want to use the entire ICD9 digits. |
|
|
67 |
dxStr = 'D_' + convert_to_3digit_icd9(tokens[4][1:-1]) |
|
|
68 |
if admId in admDxMap: admDxMap[admId].append(dxStr) |
|
|
69 |
else: admDxMap[admId] = [dxStr] |
|
|
70 |
infd.close() |
|
|
71 |
|
|
|
72 |
print('Building pid-sortedVisits mapping') |
|
|
73 |
pidSeqMap = {} |
|
|
74 |
for pid, admIdList in pidAdmMap.items(): |
|
|
75 |
#if len(admIdList) < 2: continue |
|
|
76 |
sortedList = sorted([(admDateMap[admId], admDxMap[admId]) for admId in admIdList]) |
|
|
77 |
pidSeqMap[pid] = sortedList |
|
|
78 |
|
|
|
79 |
print('Building pids, dates, strSeqs') |
|
|
80 |
pids = [] |
|
|
81 |
dates = [] |
|
|
82 |
seqs = [] |
|
|
83 |
for pid, visits in pidSeqMap.items(): |
|
|
84 |
pids.append(pid) |
|
|
85 |
seq = [] |
|
|
86 |
date = [] |
|
|
87 |
for visit in visits: |
|
|
88 |
date.append(visit[0]) |
|
|
89 |
seq.append(visit[1]) |
|
|
90 |
dates.append(date) |
|
|
91 |
seqs.append(seq) |
|
|
92 |
|
|
|
93 |
print('Converting strSeqs to intSeqs, and making types') |
|
|
94 |
types = {} |
|
|
95 |
newSeqs = [] |
|
|
96 |
for patient in seqs: |
|
|
97 |
newPatient = [] |
|
|
98 |
for visit in patient: |
|
|
99 |
newVisit = [] |
|
|
100 |
for code in visit: |
|
|
101 |
if code in types: |
|
|
102 |
newVisit.append(types[code]) |
|
|
103 |
else: |
|
|
104 |
types[code] = len(types) |
|
|
105 |
newVisit.append(types[code]) |
|
|
106 |
newPatient.append(newVisit) |
|
|
107 |
newSeqs.append(newPatient) |
|
|
108 |
|
|
|
109 |
print('Constructing the matrix') |
|
|
110 |
numPatients = len(newSeqs) |
|
|
111 |
numCodes = len(types) |
|
|
112 |
matrix = np.zeros((numPatients, numCodes)).astype('float32') |
|
|
113 |
for i, patient in enumerate(newSeqs): |
|
|
114 |
for visit in patient: |
|
|
115 |
for code in visit: |
|
|
116 |
if binary_count == 'binary': |
|
|
117 |
matrix[i][code] = 1. |
|
|
118 |
else: |
|
|
119 |
matrix[i][code] += 1. |
|
|
120 |
|
|
|
121 |
pickle.dump(pids, open(outFile+'.pids', 'wb'), -1) |
|
|
122 |
pickle.dump(matrix, open(outFile+'.matrix', 'wb'), -1) |
|
|
123 |
pickle.dump(types, open(outFile+'.types', 'wb'), -1) |