|
a |
|
b/medgan.py |
|
|
1 |
import sys, time, argparse |
|
|
2 |
import tensorflow as tf |
|
|
3 |
import numpy as np |
|
|
4 |
from sklearn.model_selection import train_test_split |
|
|
5 |
from sklearn.metrics import roc_auc_score |
|
|
6 |
from tensorflow.contrib.layers import l2_regularizer |
|
|
7 |
from tensorflow.contrib.layers import batch_norm |
|
|
8 |
|
|
|
9 |
_VALIDATION_RATIO = 0.1 |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
class Medgan(object): |
|
|
13 |
def __init__(self, |
|
|
14 |
dataType='binary', |
|
|
15 |
inputDim=615, |
|
|
16 |
embeddingDim=128, |
|
|
17 |
randomDim=128, |
|
|
18 |
generatorDims=(128, 128), |
|
|
19 |
discriminatorDims=(256, 128, 1), |
|
|
20 |
compressDims=(), |
|
|
21 |
decompressDims=(), |
|
|
22 |
bnDecay=0.99, |
|
|
23 |
l2scale=0.001): |
|
|
24 |
self.inputDim = inputDim |
|
|
25 |
self.embeddingDim = embeddingDim |
|
|
26 |
self.generatorDims = list(generatorDims) + [embeddingDim] |
|
|
27 |
self.randomDim = randomDim |
|
|
28 |
self.dataType = dataType |
|
|
29 |
|
|
|
30 |
if dataType == 'binary': |
|
|
31 |
self.aeActivation = tf.nn.tanh |
|
|
32 |
else: |
|
|
33 |
self.aeActivation = tf.nn.relu |
|
|
34 |
|
|
|
35 |
self.generatorActivation = tf.nn.relu |
|
|
36 |
self.discriminatorActivation = tf.nn.relu |
|
|
37 |
self.discriminatorDims = discriminatorDims |
|
|
38 |
self.compressDims = list(compressDims) + [embeddingDim] |
|
|
39 |
self.decompressDims = list(decompressDims) + [inputDim] |
|
|
40 |
self.bnDecay = bnDecay |
|
|
41 |
self.l2scale = l2scale |
|
|
42 |
|
|
|
43 |
def loadData(self, dataPath=''): |
|
|
44 |
data = np.load(dataPath, allow_pickle=True) |
|
|
45 |
|
|
|
46 |
if self.dataType == 'binary': |
|
|
47 |
data = np.clip(data, 0, 1) |
|
|
48 |
|
|
|
49 |
trainX, validX = train_test_split(data, test_size=_VALIDATION_RATIO, random_state=0) |
|
|
50 |
return trainX, validX |
|
|
51 |
|
|
|
52 |
def buildAutoencoder(self, x_input): |
|
|
53 |
decodeVariables = {} |
|
|
54 |
with tf.variable_scope('autoencoder', regularizer=l2_regularizer(self.l2scale)): |
|
|
55 |
tempVec = x_input |
|
|
56 |
tempDim = self.inputDim |
|
|
57 |
i = 0 |
|
|
58 |
for compressDim in self.compressDims: |
|
|
59 |
W = tf.get_variable('aee_W_'+str(i), shape=[tempDim, compressDim]) |
|
|
60 |
b = tf.get_variable('aee_b_'+str(i), shape=[compressDim]) |
|
|
61 |
tempVec = self.aeActivation(tf.add(tf.matmul(tempVec, W), b)) |
|
|
62 |
tempDim = compressDim |
|
|
63 |
i += 1 |
|
|
64 |
|
|
|
65 |
i = 0 |
|
|
66 |
for decompressDim in self.decompressDims[:-1]: |
|
|
67 |
W = tf.get_variable('aed_W_'+str(i), shape=[tempDim, decompressDim]) |
|
|
68 |
b = tf.get_variable('aed_b_'+str(i), shape=[decompressDim]) |
|
|
69 |
tempVec = self.aeActivation(tf.add(tf.matmul(tempVec, W), b)) |
|
|
70 |
tempDim = decompressDim |
|
|
71 |
decodeVariables['aed_W_'+str(i)] = W |
|
|
72 |
decodeVariables['aed_b_'+str(i)] = b |
|
|
73 |
i += 1 |
|
|
74 |
W = tf.get_variable('aed_W_'+str(i), shape=[tempDim, self.decompressDims[-1]]) |
|
|
75 |
b = tf.get_variable('aed_b_'+str(i), shape=[self.decompressDims[-1]]) |
|
|
76 |
decodeVariables['aed_W_'+str(i)] = W |
|
|
77 |
decodeVariables['aed_b_'+str(i)] = b |
|
|
78 |
|
|
|
79 |
if self.dataType == 'binary': |
|
|
80 |
x_reconst = tf.nn.sigmoid(tf.add(tf.matmul(tempVec,W),b)) |
|
|
81 |
loss = tf.reduce_mean(-tf.reduce_sum(x_input * tf.log(x_reconst + 1e-12) + (1. - x_input) * tf.log(1. - x_reconst + 1e-12), 1), 0) |
|
|
82 |
else: |
|
|
83 |
x_reconst = tf.nn.relu(tf.add(tf.matmul(tempVec,W),b)) |
|
|
84 |
loss = tf.reduce_mean((x_input - x_reconst)**2) |
|
|
85 |
|
|
|
86 |
return loss, decodeVariables |
|
|
87 |
|
|
|
88 |
def buildGenerator(self, x_input, bn_train): |
|
|
89 |
tempVec = x_input |
|
|
90 |
tempDim = self.randomDim |
|
|
91 |
with tf.variable_scope('generator', regularizer=l2_regularizer(self.l2scale)): |
|
|
92 |
for i, genDim in enumerate(self.generatorDims[:-1]): |
|
|
93 |
W = tf.get_variable('W_'+str(i), shape=[tempDim, genDim]) |
|
|
94 |
h = tf.matmul(tempVec,W) |
|
|
95 |
h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None) |
|
|
96 |
h3 = self.generatorActivation(h2) |
|
|
97 |
tempVec = h3 + tempVec |
|
|
98 |
tempDim = genDim |
|
|
99 |
W = tf.get_variable('W'+str(i), shape=[tempDim, self.generatorDims[-1]]) |
|
|
100 |
h = tf.matmul(tempVec,W) |
|
|
101 |
h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None) |
|
|
102 |
|
|
|
103 |
if self.dataType == 'binary': |
|
|
104 |
h3 = tf.nn.tanh(h2) |
|
|
105 |
else: |
|
|
106 |
h3 = tf.nn.relu(h2) |
|
|
107 |
|
|
|
108 |
output = h3 + tempVec |
|
|
109 |
return output |
|
|
110 |
|
|
|
111 |
def buildGeneratorTest(self, x_input, bn_train): |
|
|
112 |
tempVec = x_input |
|
|
113 |
tempDim = self.randomDim |
|
|
114 |
with tf.variable_scope('generator', regularizer=l2_regularizer(self.l2scale)): |
|
|
115 |
for i, genDim in enumerate(self.generatorDims[:-1]): |
|
|
116 |
W = tf.get_variable('W_'+str(i), shape=[tempDim, genDim]) |
|
|
117 |
h = tf.matmul(tempVec,W) |
|
|
118 |
h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None, trainable=False) |
|
|
119 |
h3 = self.generatorActivation(h2) |
|
|
120 |
tempVec = h3 + tempVec |
|
|
121 |
tempDim = genDim |
|
|
122 |
W = tf.get_variable('W'+str(i), shape=[tempDim, self.generatorDims[-1]]) |
|
|
123 |
h = tf.matmul(tempVec,W) |
|
|
124 |
h2 = batch_norm(h, decay=self.bnDecay, scale=True, is_training=bn_train, updates_collections=None, trainable=False) |
|
|
125 |
|
|
|
126 |
if self.dataType == 'binary': |
|
|
127 |
h3 = tf.nn.tanh(h2) |
|
|
128 |
else: |
|
|
129 |
h3 = tf.nn.relu(h2) |
|
|
130 |
|
|
|
131 |
output = h3 + tempVec |
|
|
132 |
return output |
|
|
133 |
|
|
|
134 |
def getDiscriminatorResults(self, x_input, keepRate, reuse=False): |
|
|
135 |
batchSize = tf.shape(x_input)[0] |
|
|
136 |
inputMean = tf.reshape(tf.tile(tf.reduce_mean(x_input,0), [batchSize]), (batchSize, self.inputDim)) |
|
|
137 |
tempVec = tf.concat([x_input, inputMean], 1) |
|
|
138 |
tempDim = self.inputDim * 2 |
|
|
139 |
with tf.variable_scope('discriminator', reuse=reuse, regularizer=l2_regularizer(self.l2scale)): |
|
|
140 |
for i, discDim in enumerate(self.discriminatorDims[:-1]): |
|
|
141 |
W = tf.get_variable('W_'+str(i), shape=[tempDim, discDim]) |
|
|
142 |
b = tf.get_variable('b_'+str(i), shape=[discDim]) |
|
|
143 |
h = self.discriminatorActivation(tf.add(tf.matmul(tempVec,W),b)) |
|
|
144 |
h = tf.nn.dropout(h, keepRate) |
|
|
145 |
tempVec = h |
|
|
146 |
tempDim = discDim |
|
|
147 |
W = tf.get_variable('W', shape=[tempDim, 1]) |
|
|
148 |
b = tf.get_variable('b', shape=[1]) |
|
|
149 |
y_hat = tf.squeeze(tf.nn.sigmoid(tf.add(tf.matmul(tempVec, W), b))) |
|
|
150 |
return y_hat |
|
|
151 |
|
|
|
152 |
def buildDiscriminator(self, x_real, x_fake, keepRate, decodeVariables, bn_train): |
|
|
153 |
#Discriminate for real samples |
|
|
154 |
y_hat_real = self.getDiscriminatorResults(x_real, keepRate, reuse=False) |
|
|
155 |
|
|
|
156 |
#Decompress, then discriminate for real samples |
|
|
157 |
tempVec = x_fake |
|
|
158 |
i = 0 |
|
|
159 |
for _ in self.decompressDims[:-1]: |
|
|
160 |
tempVec = self.aeActivation(tf.add(tf.matmul(tempVec, decodeVariables['aed_W_'+str(i)]), decodeVariables['aed_b_'+str(i)])) |
|
|
161 |
i += 1 |
|
|
162 |
|
|
|
163 |
if self.dataType == 'binary': |
|
|
164 |
x_decoded = tf.nn.sigmoid(tf.add(tf.matmul(tempVec, decodeVariables['aed_W_'+str(i)]), decodeVariables['aed_b_'+str(i)])) |
|
|
165 |
else: |
|
|
166 |
x_decoded = tf.nn.relu(tf.add(tf.matmul(tempVec, decodeVariables['aed_W_'+str(i)]), decodeVariables['aed_b_'+str(i)])) |
|
|
167 |
|
|
|
168 |
y_hat_fake = self.getDiscriminatorResults(x_decoded, keepRate, reuse=True) |
|
|
169 |
|
|
|
170 |
loss_d = -tf.reduce_mean(tf.log(y_hat_real + 1e-12)) - tf.reduce_mean(tf.log(1. - y_hat_fake + 1e-12)) |
|
|
171 |
loss_g = -tf.reduce_mean(tf.log(y_hat_fake + 1e-12)) |
|
|
172 |
|
|
|
173 |
return loss_d, loss_g, y_hat_real, y_hat_fake |
|
|
174 |
|
|
|
175 |
def print2file(self, buf, outFile): |
|
|
176 |
outfd = open(outFile, 'a') |
|
|
177 |
outfd.write(buf + '\n') |
|
|
178 |
outfd.close() |
|
|
179 |
|
|
|
180 |
def generateData(self, |
|
|
181 |
nSamples=100, |
|
|
182 |
modelFile='model', |
|
|
183 |
batchSize=100, |
|
|
184 |
outFile='out'): |
|
|
185 |
x_dummy = tf.placeholder('float', [None, self.inputDim]) |
|
|
186 |
_, decodeVariables = self.buildAutoencoder(x_dummy) |
|
|
187 |
x_random = tf.placeholder('float', [None, self.randomDim]) |
|
|
188 |
bn_train = tf.placeholder('bool') |
|
|
189 |
x_emb = self.buildGeneratorTest(x_random, bn_train) |
|
|
190 |
tempVec = x_emb |
|
|
191 |
i = 0 |
|
|
192 |
for _ in self.decompressDims[:-1]: |
|
|
193 |
tempVec = self.aeActivation(tf.add(tf.matmul(tempVec, decodeVariables['aed_W_'+str(i)]), decodeVariables['aed_b_'+str(i)])) |
|
|
194 |
i += 1 |
|
|
195 |
|
|
|
196 |
if self.dataType == 'binary': |
|
|
197 |
x_reconst = tf.nn.sigmoid(tf.add(tf.matmul(tempVec, decodeVariables['aed_W_'+str(i)]), decodeVariables['aed_b_'+str(i)])) |
|
|
198 |
else: |
|
|
199 |
x_reconst = tf.nn.relu(tf.add(tf.matmul(tempVec, decodeVariables['aed_W_'+str(i)]), decodeVariables['aed_b_'+str(i)])) |
|
|
200 |
|
|
|
201 |
np.random.seed(1234) |
|
|
202 |
saver = tf.train.Saver() |
|
|
203 |
outputVec = [] |
|
|
204 |
burn_in = 1000 |
|
|
205 |
with tf.Session() as sess: |
|
|
206 |
saver.restore(sess, modelFile) |
|
|
207 |
print('burning in') |
|
|
208 |
for i in range(burn_in): |
|
|
209 |
randomX = np.random.normal(size=(batchSize, self.randomDim)) |
|
|
210 |
output = sess.run(x_reconst, feed_dict={x_random:randomX, bn_train:True}) |
|
|
211 |
|
|
|
212 |
print('generating') |
|
|
213 |
nBatches = int(np.ceil(float(nSamples)) / float(batchSize)) |
|
|
214 |
for i in range(nBatches): |
|
|
215 |
randomX = np.random.normal(size=(batchSize, self.randomDim)) |
|
|
216 |
output = sess.run(x_reconst, feed_dict={x_random:randomX, bn_train:False}) |
|
|
217 |
outputVec.extend(output) |
|
|
218 |
|
|
|
219 |
outputMat = np.array(outputVec) |
|
|
220 |
np.save(outFile, outputMat) |
|
|
221 |
|
|
|
222 |
def calculateDiscAuc(self, preds_real, preds_fake): |
|
|
223 |
preds = np.concatenate([preds_real, preds_fake], axis=0) |
|
|
224 |
labels = np.concatenate([np.ones((len(preds_real))), np.zeros((len(preds_fake)))], axis=0) |
|
|
225 |
auc = roc_auc_score(labels, preds) |
|
|
226 |
return auc |
|
|
227 |
|
|
|
228 |
def calculateDiscAccuracy(self, preds_real, preds_fake): |
|
|
229 |
total = len(preds_real) + len(preds_fake) |
|
|
230 |
hit = 0 |
|
|
231 |
for pred in preds_real: |
|
|
232 |
if pred > 0.5: hit += 1 |
|
|
233 |
for pred in preds_fake: |
|
|
234 |
if pred < 0.5: hit += 1 |
|
|
235 |
acc = float(hit) / float(total) |
|
|
236 |
return acc |
|
|
237 |
|
|
|
238 |
def train(self, |
|
|
239 |
dataPath='data', |
|
|
240 |
modelPath='', |
|
|
241 |
outPath='out', |
|
|
242 |
nEpochs=500, |
|
|
243 |
discriminatorTrainPeriod=2, |
|
|
244 |
generatorTrainPeriod=1, |
|
|
245 |
pretrainBatchSize=100, |
|
|
246 |
batchSize=1000, |
|
|
247 |
pretrainEpochs=100, |
|
|
248 |
saveMaxKeep=0): |
|
|
249 |
x_raw = tf.placeholder('float', [None, self.inputDim]) |
|
|
250 |
x_random= tf.placeholder('float', [None, self.randomDim]) |
|
|
251 |
keep_prob = tf.placeholder('float') |
|
|
252 |
bn_train = tf.placeholder('bool') |
|
|
253 |
|
|
|
254 |
loss_ae, decodeVariables = self.buildAutoencoder(x_raw) |
|
|
255 |
x_fake = self.buildGenerator(x_random, bn_train) |
|
|
256 |
loss_d, loss_g, y_hat_real, y_hat_fake = self.buildDiscriminator(x_raw, x_fake, keep_prob, decodeVariables, bn_train) |
|
|
257 |
trainX, validX = self.loadData(dataPath) |
|
|
258 |
|
|
|
259 |
t_vars = tf.trainable_variables() |
|
|
260 |
ae_vars = [var for var in t_vars if 'autoencoder' in var.name] |
|
|
261 |
d_vars = [var for var in t_vars if 'discriminator' in var.name] |
|
|
262 |
g_vars = [var for var in t_vars if 'generator' in var.name] |
|
|
263 |
|
|
|
264 |
all_regs = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) |
|
|
265 |
|
|
|
266 |
optimize_ae = tf.train.AdamOptimizer().minimize(loss_ae + sum(all_regs), var_list=ae_vars) |
|
|
267 |
optimize_d = tf.train.AdamOptimizer().minimize(loss_d + sum(all_regs), var_list=d_vars) |
|
|
268 |
decodeVariablesValues = list(decodeVariables.values()) |
|
|
269 |
optimize_g = tf.train.AdamOptimizer().minimize(loss_g + sum(all_regs), var_list=g_vars+decodeVariablesValues) |
|
|
270 |
|
|
|
271 |
initOp = tf.global_variables_initializer() |
|
|
272 |
|
|
|
273 |
nBatches = int(np.ceil(float(trainX.shape[0]) / float(batchSize))) |
|
|
274 |
saver = tf.train.Saver(max_to_keep=saveMaxKeep) |
|
|
275 |
logFile = outPath + '.log' |
|
|
276 |
|
|
|
277 |
with tf.Session() as sess: |
|
|
278 |
if modelPath == '': sess.run(initOp) |
|
|
279 |
else: saver.restore(sess, modelPath) |
|
|
280 |
nTrainBatches = int(np.ceil(float(trainX.shape[0])) / float(pretrainBatchSize)) |
|
|
281 |
nValidBatches = int(np.ceil(float(validX.shape[0])) / float(pretrainBatchSize)) |
|
|
282 |
|
|
|
283 |
if modelPath== '': |
|
|
284 |
for epoch in range(pretrainEpochs): |
|
|
285 |
idx = np.random.permutation(trainX.shape[0]) |
|
|
286 |
trainLossVec = [] |
|
|
287 |
for i in range(nTrainBatches): |
|
|
288 |
batchX = trainX[idx[i*pretrainBatchSize:(i+1)*pretrainBatchSize]] |
|
|
289 |
_, loss = sess.run([optimize_ae, loss_ae], feed_dict={x_raw:batchX}) |
|
|
290 |
trainLossVec.append(loss) |
|
|
291 |
idx = np.random.permutation(validX.shape[0]) |
|
|
292 |
validLossVec = [] |
|
|
293 |
for i in range(nValidBatches): |
|
|
294 |
batchX = validX[idx[i*pretrainBatchSize:(i+1)*pretrainBatchSize]] |
|
|
295 |
loss = sess.run(loss_ae, feed_dict={x_raw:batchX}) |
|
|
296 |
validLossVec.append(loss) |
|
|
297 |
validReverseLoss = 0. |
|
|
298 |
buf = 'Pretrain_Epoch:%d, trainLoss:%f, validLoss:%f, validReverseLoss:%f' % (epoch, np.mean(trainLossVec), np.mean(validLossVec), validReverseLoss) |
|
|
299 |
print(buf) |
|
|
300 |
self.print2file(buf, logFile) |
|
|
301 |
|
|
|
302 |
idx = np.arange(trainX.shape[0]) |
|
|
303 |
for epoch in range(nEpochs): |
|
|
304 |
d_loss_vec= [] |
|
|
305 |
g_loss_vec = [] |
|
|
306 |
for i in range(nBatches): |
|
|
307 |
for _ in range(discriminatorTrainPeriod): |
|
|
308 |
batchIdx = np.random.choice(idx, size=batchSize, replace=False) |
|
|
309 |
batchX = trainX[batchIdx] |
|
|
310 |
randomX = np.random.normal(size=(batchSize, self.randomDim)) |
|
|
311 |
_, discLoss = sess.run([optimize_d, loss_d], feed_dict={x_raw:batchX, x_random:randomX, keep_prob:1.0, bn_train:False}) |
|
|
312 |
d_loss_vec.append(discLoss) |
|
|
313 |
for _ in range(generatorTrainPeriod): |
|
|
314 |
randomX = np.random.normal(size=(batchSize, self.randomDim)) |
|
|
315 |
_, generatorLoss = sess.run([optimize_g, loss_g], feed_dict={x_raw:batchX, x_random:randomX, keep_prob:1.0, bn_train:True}) |
|
|
316 |
g_loss_vec.append(generatorLoss) |
|
|
317 |
|
|
|
318 |
idx = np.arange(len(validX)) |
|
|
319 |
nValidBatches = int(np.ceil(float(len(validX)) / float(batchSize))) |
|
|
320 |
validAccVec = [] |
|
|
321 |
validAucVec = [] |
|
|
322 |
for i in range(nBatches): |
|
|
323 |
batchIdx = np.random.choice(idx, size=batchSize, replace=False) |
|
|
324 |
batchX = validX[batchIdx] |
|
|
325 |
randomX = np.random.normal(size=(batchSize, self.randomDim)) |
|
|
326 |
preds_real, preds_fake, = sess.run([y_hat_real, y_hat_fake], feed_dict={x_raw:batchX, x_random:randomX, keep_prob:1.0, bn_train:False}) |
|
|
327 |
validAcc = self.calculateDiscAccuracy(preds_real, preds_fake) |
|
|
328 |
validAuc = self.calculateDiscAuc(preds_real, preds_fake) |
|
|
329 |
validAccVec.append(validAcc) |
|
|
330 |
validAucVec.append(validAuc) |
|
|
331 |
buf = 'Epoch:%d, d_loss:%f, g_loss:%f, accuracy:%f, AUC:%f' % (epoch, np.mean(d_loss_vec), np.mean(g_loss_vec), np.mean(validAccVec), np.mean(validAucVec)) |
|
|
332 |
print(buf) |
|
|
333 |
self.print2file(buf, logFile) |
|
|
334 |
savePath = saver.save(sess, outPath, global_step=epoch) |
|
|
335 |
print(savePath) |
|
|
336 |
|
|
|
337 |
def str2bool(v): |
|
|
338 |
if v.lower() in ('yes', 'true', 't', 'y', '1'): |
|
|
339 |
return True |
|
|
340 |
elif v.lower() in ('no', 'false', 'f', 'n', '0'): |
|
|
341 |
return False |
|
|
342 |
else: |
|
|
343 |
raise argparse.ArgumentTypeError('Boolean value expected.') |
|
|
344 |
|
|
|
345 |
def parse_arguments(parser): |
|
|
346 |
parser.add_argument('--embed_size', type=int, default=128, help='The dimension size of the embedding, which will be generated by the generator. (default value: 128)') |
|
|
347 |
parser.add_argument('--noise_size', type=int, default=128, help='The dimension size of the random noise, on which the generator is conditioned. (default value: 128)') |
|
|
348 |
parser.add_argument('--generator_size', type=tuple, default=(128, 128), help='The dimension size of the generator. Note that another layer of size "--embed_size" is always added. (default value: (128, 128))') |
|
|
349 |
parser.add_argument('--discriminator_size', type=tuple, default=(256, 128, 1), help='The dimension size of the discriminator. (default value: (256, 128, 1))') |
|
|
350 |
parser.add_argument('--compressor_size', type=tuple, default=(), help='The dimension size of the encoder of the autoencoder. Note that another layer of size "--embed_size" is always added. Therefore this can be a blank tuple. (default value: ())') |
|
|
351 |
parser.add_argument('--decompressor_size', type=tuple, default=(), help='The dimension size of the decoder of the autoencoder. Note that another layer, whose size is equal to the dimension of the <patient_matrix>, is always added. Therefore this can be a blank tuple. (default value: ())') |
|
|
352 |
parser.add_argument('--data_type', type=str, default='binary', choices=['binary', 'count'], help='The input data type. The <patient matrix> could either contain binary values or count values. (default value: "binary")') |
|
|
353 |
parser.add_argument('--batchnorm_decay', type=float, default=0.99, help='Decay value for the moving average used in Batch Normalization. (default value: 0.99)') |
|
|
354 |
parser.add_argument('--L2', type=float, default=0.001, help='L2 regularization coefficient for all weights. (default value: 0.001)') |
|
|
355 |
|
|
|
356 |
parser.add_argument('data_file', type=str, metavar='<patient_matrix>', help='The path to the numpy matrix containing aggregated patient records.') |
|
|
357 |
parser.add_argument('out_file', type=str, metavar='<out_file>', help='The path to the output models.') |
|
|
358 |
parser.add_argument('--model_file', type=str, metavar='<model_file>', default='', help='The path to the model file, in case you want to continue training. (default value: '')') |
|
|
359 |
parser.add_argument('--n_pretrain_epoch', type=int, default=100, help='The number of epochs to pre-train the autoencoder. (default value: 100)') |
|
|
360 |
parser.add_argument('--n_epoch', type=int, default=1000, help='The number of epochs to train medGAN. (default value: 1000)') |
|
|
361 |
parser.add_argument('--n_discriminator_update', type=int, default=2, help='The number of times to update the discriminator per epoch. (default value: 2)') |
|
|
362 |
parser.add_argument('--n_generator_update', type=int, default=1, help='The number of times to update the generator per epoch. (default value: 1)') |
|
|
363 |
parser.add_argument('--pretrain_batch_size', type=int, default=100, help='The size of a single mini-batch for pre-training the autoencoder. (default value: 100)') |
|
|
364 |
parser.add_argument('--batch_size', type=int, default=1000, help='The size of a single mini-batch for training medGAN. (default value: 1000)') |
|
|
365 |
parser.add_argument('--save_max_keep', type=int, default=0, help='The number of models to keep. Setting this to 0 will save models for every epoch. (default value: 0)') |
|
|
366 |
parser.add_argument('--generate_data', type=str2bool, default=False, help='If True the model generates data, if False the model is trained (default value: False)') |
|
|
367 |
args = parser.parse_args() |
|
|
368 |
return args |
|
|
369 |
|
|
|
370 |
|
|
|
371 |
if __name__ == '__main__': |
|
|
372 |
|
|
|
373 |
parser = argparse.ArgumentParser() |
|
|
374 |
args = parse_arguments(parser) |
|
|
375 |
|
|
|
376 |
data = np.load(args.data_file, allow_pickle=True) |
|
|
377 |
inputDim = data.shape[1] |
|
|
378 |
|
|
|
379 |
mg = Medgan(dataType=args.data_type, |
|
|
380 |
inputDim=inputDim, |
|
|
381 |
embeddingDim=args.embed_size, |
|
|
382 |
randomDim=args.noise_size, |
|
|
383 |
generatorDims=args.generator_size, |
|
|
384 |
discriminatorDims=args.discriminator_size, |
|
|
385 |
compressDims=args.compressor_size, |
|
|
386 |
decompressDims=args.decompressor_size, |
|
|
387 |
bnDecay=args.batchnorm_decay, |
|
|
388 |
l2scale=args.L2) |
|
|
389 |
|
|
|
390 |
# True for generation, False for training |
|
|
391 |
if not args.generate_data: |
|
|
392 |
# Training |
|
|
393 |
mg.train(dataPath=args.data_file, |
|
|
394 |
modelPath=args.model_file, |
|
|
395 |
outPath=args.out_file, |
|
|
396 |
pretrainEpochs=args.n_pretrain_epoch, |
|
|
397 |
nEpochs=args.n_epoch, |
|
|
398 |
discriminatorTrainPeriod=args.n_discriminator_update, |
|
|
399 |
generatorTrainPeriod=args.n_generator_update, |
|
|
400 |
pretrainBatchSize=args.pretrain_batch_size, |
|
|
401 |
batchSize=args.batch_size, |
|
|
402 |
saveMaxKeep=args.save_max_keep) |
|
|
403 |
else: |
|
|
404 |
# Generate synthetic data using a trained model |
|
|
405 |
# You must specify "--model_file" and "<out_file>" to generate synthetic data. |
|
|
406 |
mg.generateData(nSamples=10000, |
|
|
407 |
modelFile=args.model_file, |
|
|
408 |
batchSize=args.batch_size, |
|
|
409 |
outFile=args.out_file) |