import spacy
from medacy.pipeline_components.feature_extractors.discrete_feature_extractor import FeatureExtractor
from medacy.pipeline_components.feature_overlayers.metamap.metamap_component import MetaMapOverlayer
from medacy.pipeline_components.learners.crf_learner import get_crf
from medacy.pipelines.base.base_pipeline import BasePipeline
class ScispacyPipeline(BasePipeline):
"""
A pipeline for named entity recognition using ScispaCy, see https://allenai.github.io/scispacy/
This pipeline differs from the ClinicalPipeline in that it uses AllenAI's 'en_core_sci_md' model and
the tokenizer is simply spaCy's tokenizer.
Created by Steele Farnsworth of NLP@VCU
Requirements:
scispacy
https://s3-us-west-2.amazonaws.com/ai2-s2-scispacy/releases/v0.2.0/en_core_sci_md-0.2.0.tar.gz
"""
def __init__(self, entities, metamap=None, **kwargs):
"""
:param entities: a list of entities
:param metamap: an instance of MetaMap if metamap should be used, defaults to None.
"""
super().__init__(entities, spacy_pipeline=spacy.load("en_core_sci_md"), **kwargs)
if metamap:
self.add_component(MetaMapOverlayer, metamap)
def get_learner(self):
return "CRF_l2sgd", get_crf()
def get_tokenizer(self):
return None
def get_feature_extractor(self):
return FeatureExtractor(window_size=3, spacy_features=['pos_', 'shape_', 'prefix_', 'suffix_', 'text'])