|
a |
|
b/lstm_predict.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
""" |
|
|
3 |
Created on Mon Mar 12 08:51:35 2019 |
|
|
4 |
|
|
|
5 |
@author: aaq109 |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import timeit |
|
|
9 |
import numpy as np |
|
|
10 |
from numpy import array |
|
|
11 |
from keras.models import * |
|
|
12 |
from keras.layers import * |
|
|
13 |
from keras import backend as K |
|
|
14 |
from keras.callbacks import EarlyStopping, ModelCheckpoint |
|
|
15 |
from keras.preprocessing import sequence |
|
|
16 |
from sklearn.model_selection import train_test_split |
|
|
17 |
from sklearn.metrics import * |
|
|
18 |
from tensorflow.keras.callbacks import EarlyStopping, Callback |
|
|
19 |
from sklearn.metrics import roc_curve, auc |
|
|
20 |
import matplotlib.pyplot as plt |
|
|
21 |
import pandas as pd |
|
|
22 |
from scipy import stats |
|
|
23 |
|
|
|
24 |
# Read data |
|
|
25 |
N_visits=15 # Maximum number of inpatient visits in the dataset |
|
|
26 |
|
|
|
27 |
def read_data(exp, N_visits): |
|
|
28 |
label='sampledata_lstm_'+str(N_visits)+'.csv' |
|
|
29 |
print('Reading File: ',label) |
|
|
30 |
pidAdmMap = {} |
|
|
31 |
admDetailMap={} |
|
|
32 |
output=[] |
|
|
33 |
Weights=[] |
|
|
34 |
VisitIds=[] |
|
|
35 |
if exp[0:2]=='11': |
|
|
36 |
ind1=6 |
|
|
37 |
ind2=202 |
|
|
38 |
elif exp[0:2]=='10': |
|
|
39 |
ind1=6 |
|
|
40 |
ind2=17 |
|
|
41 |
else: |
|
|
42 |
ind1=17 |
|
|
43 |
ind2=202 |
|
|
44 |
infd = open (label,'r') |
|
|
45 |
infd.readline() |
|
|
46 |
for line in infd: |
|
|
47 |
tokens = line.strip().split(',') |
|
|
48 |
pid=int(tokens[0]) |
|
|
49 |
admId=(tokens[1]) |
|
|
50 |
det=(tokens[ind1:ind2]) #200 if 185 d2v vector is used |
|
|
51 |
output.append(tokens[5]) |
|
|
52 |
Weights.append(tokens[203]) |
|
|
53 |
VisitIds.append(tokens[1]) |
|
|
54 |
if admId in admDetailMap: |
|
|
55 |
admDetailMap[admId].append(det) |
|
|
56 |
else: |
|
|
57 |
admDetailMap[admId]=det |
|
|
58 |
if pid in pidAdmMap: |
|
|
59 |
pidAdmMap[pid].append(admId) |
|
|
60 |
else: |
|
|
61 |
pidAdmMap[pid]=[admId] |
|
|
62 |
infd.close() |
|
|
63 |
_list = [] |
|
|
64 |
for patient in pidAdmMap.keys(): |
|
|
65 |
a = [admDetailMap[xx] for xx in pidAdmMap[patient]] |
|
|
66 |
_list.append(a) |
|
|
67 |
X=np.array([np.array(xi) for xi in _list]) |
|
|
68 |
a,b,c=X.shape |
|
|
69 |
Y=np.array(output) |
|
|
70 |
Sample_weight=np.array(Weights) |
|
|
71 |
X = X.astype(np.float) |
|
|
72 |
Y = Y.astype(np.float) |
|
|
73 |
Sample_weight = Sample_weight.astype(np.float) |
|
|
74 |
Y=Y.reshape(X.shape[0],N_visits,1) |
|
|
75 |
return X, Y,Sample_weight,VisitIds |
|
|
76 |
|
|
|
77 |
def ppv(y_true, y_pred): |
|
|
78 |
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) |
|
|
79 |
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) |
|
|
80 |
ppv = true_positives / (predicted_positives + K.epsilon()) |
|
|
81 |
return ppv |
|
|
82 |
|
|
|
83 |
def npv(y_true, y_pred): |
|
|
84 |
true_negatives = K.sum(K.round(K.clip((1 - y_true) * (1 - y_pred), 0, 1))) |
|
|
85 |
predicted_negatives = K.sum(K.round(K.clip(1-y_pred, 0, 1))) |
|
|
86 |
npv = true_negatives / (predicted_negatives + K.epsilon()) |
|
|
87 |
return npv |
|
|
88 |
|
|
|
89 |
def sensitivity(y_true, y_pred): |
|
|
90 |
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) |
|
|
91 |
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) |
|
|
92 |
return true_positives / (possible_positives + K.epsilon()) |
|
|
93 |
|
|
|
94 |
def specificity(y_true, y_pred): |
|
|
95 |
true_negatives = K.sum(K.round(K.clip((1-y_true) * (1-y_pred), 0, 1))) |
|
|
96 |
possible_negatives = K.sum(K.round(K.clip(1-y_true, 0, 1))) |
|
|
97 |
return true_negatives / (possible_negatives + K.epsilon()) |
|
|
98 |
|
|
|
99 |
def recall(y_true, y_pred): |
|
|
100 |
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) |
|
|
101 |
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1))) |
|
|
102 |
recall = true_positives / (possible_positives + K.epsilon()) |
|
|
103 |
return recall |
|
|
104 |
|
|
|
105 |
def model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train): |
|
|
106 |
from sklearn.preprocessing import binarize |
|
|
107 |
from sklearn.metrics import f1_score |
|
|
108 |
from sklearn.metrics import balanced_accuracy_score,accuracy_score |
|
|
109 |
import operator |
|
|
110 |
y_pred = model.predict(X_train).ravel() |
|
|
111 |
y_test=Y_train.ravel() |
|
|
112 |
g=Sample_weight_train.ravel() |
|
|
113 |
g[g==0]=0 |
|
|
114 |
g[g>0]=1 |
|
|
115 |
indices=np.where(g==0) |
|
|
116 |
y_pred=np.delete(y_pred,indices,0) |
|
|
117 |
y_test=np.delete(y_test,indices,0) |
|
|
118 |
score={} |
|
|
119 |
for thresh in np.arange(0.001,1,0.001): |
|
|
120 |
y_pred_class=binarize([y_pred],thresh)[0] |
|
|
121 |
cm= confusion_matrix(y_test, y_pred_class) |
|
|
122 |
score[thresh]=(48000*cm[1,1]*0.5)-(7000*(cm[1,1]+cm[0,1])) |
|
|
123 |
thresh=max(score.items(), key=operator.itemgetter(1))[0] |
|
|
124 |
|
|
|
125 |
y_pred = model.predict(X_test).ravel() |
|
|
126 |
y_test=Y_test.ravel() |
|
|
127 |
g=Sample_weight_test.ravel() |
|
|
128 |
g[g==0]=0 |
|
|
129 |
g[g>0]=1 |
|
|
130 |
if exp[2]=='1': |
|
|
131 |
fpr, tpr, thetas = roc_curve(y_test, y_pred,sample_weight=g,pos_label=1) |
|
|
132 |
prc, recal, thetas = precision_recall_curve(y_test, y_pred,sample_weight=g) |
|
|
133 |
indices=np.where(g==0) #Patient gender |
|
|
134 |
y_pred=np.delete(y_pred,indices,0) |
|
|
135 |
y_test=np.delete(y_test,indices,0) |
|
|
136 |
else: |
|
|
137 |
fpr, tpr, thetas = roc_curve(y_test, y_pred,pos_label=1) |
|
|
138 |
prc, recal, thetas = precision_recall_curve(y_test, y_pred) |
|
|
139 |
|
|
|
140 |
AUC_test = auc(fpr, tpr) |
|
|
141 |
PR_auc = auc(recal,prc) |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
y_pred=binarize([y_pred],thresh)[0] |
|
|
145 |
cm= confusion_matrix(y_test, y_pred) |
|
|
146 |
cost_saved=(48000*cm[1,1]*0.5)-(7000*(cm[1,1]+cm[0,1])) |
|
|
147 |
Accuracy=(cm[0,0]+cm[1,1])/sum(sum(cm)) |
|
|
148 |
Sensitivity_test=cm[1,1]/(cm[1,0]+cm[1,1]) |
|
|
149 |
Specificity_test=cm[0,0]/(cm[0,0]+cm[0,1]) |
|
|
150 |
F1_score=f1_score(y_test,y_pred) |
|
|
151 |
cost_saved=cost_saved/(np.sum(y_test)*(48000-7000)*0.5) |
|
|
152 |
|
|
|
153 |
return Accuracy, AUC_test, Sensitivity_test, Specificity_test, PR_auc, F1_score,cost_saved |
|
|
154 |
|
|
|
155 |
def save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp): |
|
|
156 |
label1='AUC_test_'+exp+'.npy' |
|
|
157 |
label2='Sensitivity_test_'+exp+'.npy' |
|
|
158 |
label3='Specificity_test_'+exp+'.npy' |
|
|
159 |
label4='PR_auc_'+exp+'.npy' |
|
|
160 |
label5='f1_score_'+exp+'.npy' |
|
|
161 |
label6='cost_saved_'+exp+'.npy' |
|
|
162 |
np.save(label1, AUC_test) |
|
|
163 |
np.save(label2, Sensitivity_test) |
|
|
164 |
np.save(label3, Specificity_test) |
|
|
165 |
np.save(label4, PR_auc) |
|
|
166 |
np.save(label5, F1_score) |
|
|
167 |
np.save(label6, cost_saved) |
|
|
168 |
val1=np.fromiter(AUC_test.values(), dtype=float) |
|
|
169 |
val2=np.fromiter(Sensitivity_test.values(), dtype=float) |
|
|
170 |
val3=np.fromiter(Specificity_test.values(), dtype=float) |
|
|
171 |
val4=np.fromiter(PR_auc.values(), dtype=float) |
|
|
172 |
val5=np.fromiter(F1_score.values(), dtype=float) |
|
|
173 |
val6=np.fromiter(cost_saved.values(), dtype=float) |
|
|
174 |
|
|
|
175 |
print(label1,[np.mean(val1[np.nonzero(val1)]),np.std(val1[np.nonzero(val1)])]) |
|
|
176 |
print(label2,[np.mean(val2[np.nonzero(val2)]),np.std(val2[np.nonzero(val2)])]) |
|
|
177 |
print(label3,[np.mean(val3[np.nonzero(val3)]),np.std(val3[np.nonzero(val3)])]) |
|
|
178 |
print(label4,[np.mean(val4[np.nonzero(val4)]),np.std(val4[np.nonzero(val4)])]) |
|
|
179 |
print(label5,[np.mean(val5[np.nonzero(val5)]),np.std(val5[np.nonzero(val5)])]) |
|
|
180 |
print(label6,[np.mean(val6[np.nonzero(val6)]),np.std(val6[np.nonzero(val6)])]) |
|
|
181 |
|
|
|
182 |
|
|
|
183 |
return None |
|
|
184 |
|
|
|
185 |
|
|
|
186 |
## Define different experiments |
|
|
187 |
# 1111 - HDF+MDF+LSTM+CA |
|
|
188 |
exp='1111' |
|
|
189 |
AUC_test={} |
|
|
190 |
Accuracy_test={} |
|
|
191 |
PR_auc={} |
|
|
192 |
Sensitivity_test={} |
|
|
193 |
Specificity_test={} |
|
|
194 |
average_precision={} |
|
|
195 |
F1_score={} |
|
|
196 |
cost_saved={} |
|
|
197 |
#Set Params |
|
|
198 |
W_classA=0 #Dummy visit weights |
|
|
199 |
W_classB=1 #No readmission class weight |
|
|
200 |
W_classC=3 #Readmission class weight |
|
|
201 |
E_pochs=80 # Traning epochs |
|
|
202 |
B_size=32 # Batch size |
|
|
203 |
T_size=0.3 # Samples used for testing |
|
|
204 |
NN_nodes=[128,64,32,1] # Number of nodes in the NN |
|
|
205 |
N_iter=10 |
|
|
206 |
|
|
|
207 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
208 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
209 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
210 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
211 |
Sample_weight=Sample_weight.reshape(X.shape[0],N_visits,1) |
|
|
212 |
Visits=np.array(VisitIds) |
|
|
213 |
Visits=Visits.reshape(X.shape[0],N_visits,1) |
|
|
214 |
es=EarlyStopping(monitor='val_loss', patience=20, mode='min') |
|
|
215 |
|
|
|
216 |
for iter_nm in range(0,N_iter): |
|
|
217 |
print('Iteration ',iter_nm) |
|
|
218 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
219 |
Sample_weight_train=Sample_weight_train.reshape(len(Sample_weight_train),N_visits) |
|
|
220 |
model = Sequential() |
|
|
221 |
model.add(TimeDistributed(Dense(NN_nodes[0], activation='sigmoid'), input_shape=(N_visits, X.shape[2]))) |
|
|
222 |
model.add(LSTM(NN_nodes[1], return_sequences=True)) |
|
|
223 |
model.add(TimeDistributed(Dense(NN_nodes[2], activation='sigmoid'))) |
|
|
224 |
model.add(TimeDistributed(Dense(NN_nodes[3], activation='sigmoid'))) |
|
|
225 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='temporal', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
226 |
# print(model.summary()) |
|
|
227 |
#np.random.seed(1337) |
|
|
228 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
229 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.3, callbacks=[es]) |
|
|
230 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
231 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
232 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
233 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
234 |
|
|
|
235 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
236 |
|
|
|
237 |
|
|
|
238 |
## Define different experiments |
|
|
239 |
# 1110 - HDF+MDF+LSTM |
|
|
240 |
exp='1110' |
|
|
241 |
AUC_test={} |
|
|
242 |
Accuracy_test={} |
|
|
243 |
PR_auc={} |
|
|
244 |
Sensitivity_test={} |
|
|
245 |
Specificity_test={} |
|
|
246 |
average_precision={} |
|
|
247 |
F1_score={} |
|
|
248 |
cost_saved={} |
|
|
249 |
#Set Params |
|
|
250 |
W_classA=0 #Dummy visit weights |
|
|
251 |
W_classB=1 #No readmission class weight |
|
|
252 |
W_classC=1 #Readmission class weight |
|
|
253 |
E_pochs=80 # Traning epochs |
|
|
254 |
B_size=32 # Batch size |
|
|
255 |
T_size=0.3 # Samples used for testing |
|
|
256 |
NN_nodes=[128,64,32,1] # Number of nodes in the NN |
|
|
257 |
N_iter=10 |
|
|
258 |
|
|
|
259 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
260 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
261 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
262 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
263 |
Sample_weight=Sample_weight.reshape(X.shape[0],N_visits,1) |
|
|
264 |
Visits=np.array(VisitIds) |
|
|
265 |
Visits=Visits.reshape(X.shape[0],N_visits,1) |
|
|
266 |
|
|
|
267 |
for iter_nm in range(0,N_iter): |
|
|
268 |
print('Iteration ',iter_nm) |
|
|
269 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
270 |
Sample_weight_train=Sample_weight_train.reshape(len(Sample_weight_train),N_visits) |
|
|
271 |
model = Sequential() |
|
|
272 |
model.add(TimeDistributed(Dense(NN_nodes[0], activation='sigmoid'), input_shape=(N_visits, X.shape[2]))) |
|
|
273 |
model.add(LSTM(NN_nodes[1], return_sequences=True)) |
|
|
274 |
model.add(TimeDistributed(Dense(NN_nodes[2], activation='sigmoid'))) |
|
|
275 |
model.add(TimeDistributed(Dense(NN_nodes[3], activation='sigmoid'))) |
|
|
276 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='temporal', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
277 |
# print(model.summary()) |
|
|
278 |
#np.random.seed(1337) |
|
|
279 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
280 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
281 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
282 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
283 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
284 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
285 |
|
|
|
286 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
287 |
|
|
|
288 |
|
|
|
289 |
## Define different experiments |
|
|
290 |
# 0111 - MDF+LSTM+CA |
|
|
291 |
exp='0111' |
|
|
292 |
AUC_test={} |
|
|
293 |
Accuracy_test={} |
|
|
294 |
PR_auc={} |
|
|
295 |
Sensitivity_test={} |
|
|
296 |
Specificity_test={} |
|
|
297 |
average_precision={} |
|
|
298 |
F1_score={} |
|
|
299 |
cost_saved={} |
|
|
300 |
|
|
|
301 |
#Set Params |
|
|
302 |
W_classA=0 #Dummy visit weights |
|
|
303 |
W_classB=1 #No readmission class weight |
|
|
304 |
W_classC=3 #Readmission class weight |
|
|
305 |
E_pochs=80 # Traning epochs |
|
|
306 |
B_size=32 # Batch size |
|
|
307 |
T_size=0.3 # Samples used for testing |
|
|
308 |
NN_nodes=[128,64,32,1] # Number of nodes in the NN |
|
|
309 |
N_iter=10 |
|
|
310 |
|
|
|
311 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
312 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
313 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
314 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
315 |
Sample_weight=Sample_weight.reshape(X.shape[0],N_visits,1) |
|
|
316 |
Visits=np.array(VisitIds) |
|
|
317 |
Visits=Visits.reshape(X.shape[0],N_visits,1) |
|
|
318 |
es=EarlyStopping(monitor='val_loss', patience=20, mode='min') |
|
|
319 |
|
|
|
320 |
for iter_nm in range(0,N_iter): |
|
|
321 |
print('Iteration ',iter_nm) |
|
|
322 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
323 |
Sample_weight_train=Sample_weight_train.reshape(len(Sample_weight_train),N_visits) |
|
|
324 |
model = Sequential() |
|
|
325 |
model.add(TimeDistributed(Dense(NN_nodes[0], activation='sigmoid'), input_shape=(N_visits, X.shape[2]))) |
|
|
326 |
model.add(LSTM(NN_nodes[1], return_sequences=True)) |
|
|
327 |
model.add(TimeDistributed(Dense(NN_nodes[2], activation='sigmoid'))) |
|
|
328 |
model.add(TimeDistributed(Dense(NN_nodes[3], activation='sigmoid'))) |
|
|
329 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='temporal', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
330 |
print(model.summary()) |
|
|
331 |
#np.random.seed(1337) |
|
|
332 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
333 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
334 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
335 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
336 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
337 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
338 |
|
|
|
339 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
340 |
|
|
|
341 |
## Define different experiments |
|
|
342 |
# 0110 - MDF+LSTM |
|
|
343 |
exp='0110' |
|
|
344 |
AUC_test={} |
|
|
345 |
Accuracy_test={} |
|
|
346 |
PR_auc={} |
|
|
347 |
Sensitivity_test={} |
|
|
348 |
Specificity_test={} |
|
|
349 |
average_precision={} |
|
|
350 |
F1_score={} |
|
|
351 |
cost_saved={} |
|
|
352 |
#Set Params |
|
|
353 |
W_classA=0 #Dummy visit weights |
|
|
354 |
W_classB=1 #No readmission class weight |
|
|
355 |
W_classC=1 #Readmission class weight |
|
|
356 |
E_pochs=80 # Traning epochs |
|
|
357 |
B_size=32 # Batch size |
|
|
358 |
T_size=0.3 # Samples used for testing |
|
|
359 |
NN_nodes=[128,64,32,1] # Number of nodes in the NN |
|
|
360 |
N_iter=10 |
|
|
361 |
|
|
|
362 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
363 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
364 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
365 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
366 |
Sample_weight=Sample_weight.reshape(X.shape[0],N_visits,1) |
|
|
367 |
Visits=np.array(VisitIds) |
|
|
368 |
Visits=Visits.reshape(X.shape[0],N_visits,1) |
|
|
369 |
|
|
|
370 |
for iter_nm in range(0,N_iter): |
|
|
371 |
print('Iteration ',iter_nm) |
|
|
372 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
373 |
Sample_weight_train=Sample_weight_train.reshape(len(Sample_weight_train),N_visits) |
|
|
374 |
model = Sequential() |
|
|
375 |
model.add(TimeDistributed(Dense(NN_nodes[0], activation='sigmoid'), input_shape=(N_visits, X.shape[2]))) |
|
|
376 |
model.add(LSTM(NN_nodes[1], return_sequences=True)) |
|
|
377 |
model.add(TimeDistributed(Dense(NN_nodes[2], activation='sigmoid'))) |
|
|
378 |
model.add(TimeDistributed(Dense(NN_nodes[3], activation='sigmoid'))) |
|
|
379 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='temporal', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
380 |
print(model.summary()) |
|
|
381 |
#np.random.seed(1337) |
|
|
382 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
383 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
384 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
385 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
386 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
387 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
388 |
|
|
|
389 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
390 |
|
|
|
391 |
## Define different experiments |
|
|
392 |
# 1011 - HDF+LSTM+CA |
|
|
393 |
exp='1011' |
|
|
394 |
AUC_test={} |
|
|
395 |
Accuracy_test={} |
|
|
396 |
PR_auc={} |
|
|
397 |
Sensitivity_test={} |
|
|
398 |
Specificity_test={} |
|
|
399 |
average_precision={} |
|
|
400 |
F1_score={} |
|
|
401 |
cost_saved={} |
|
|
402 |
|
|
|
403 |
#Set Params |
|
|
404 |
W_classA=0 #Dummy visit weights |
|
|
405 |
W_classB=1 #No readmission class weight |
|
|
406 |
W_classC=3 #Readmission class weight |
|
|
407 |
E_pochs=80 # Traning epochs |
|
|
408 |
B_size=32 # Batch size |
|
|
409 |
T_size=0.3 # Samples used for testing |
|
|
410 |
NN_nodes=[6,3,1] # Number of nodes in the NN |
|
|
411 |
N_iter=10 |
|
|
412 |
|
|
|
413 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
414 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
415 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
416 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
417 |
Sample_weight=Sample_weight.reshape(X.shape[0],N_visits,1) |
|
|
418 |
Visits=np.array(VisitIds) |
|
|
419 |
Visits=Visits.reshape(X.shape[0],N_visits,1) |
|
|
420 |
es=EarlyStopping(monitor='val_loss', patience=20, mode='min') |
|
|
421 |
|
|
|
422 |
for iter_nm in range(0,N_iter): |
|
|
423 |
print('Iteration ',iter_nm) |
|
|
424 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
425 |
Sample_weight_train=Sample_weight_train.reshape(len(Sample_weight_train),N_visits) |
|
|
426 |
model = Sequential() |
|
|
427 |
model.add(TimeDistributed(Dense(NN_nodes[0], activation='sigmoid'), input_shape=(N_visits, X.shape[2]))) |
|
|
428 |
model.add(LSTM(NN_nodes[1], return_sequences=True)) |
|
|
429 |
model.add(TimeDistributed(Dense(NN_nodes[2], activation='sigmoid'))) |
|
|
430 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='temporal', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
431 |
print(model.summary()) |
|
|
432 |
#np.random.seed(1337) |
|
|
433 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
434 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
435 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
436 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
437 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
438 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
439 |
|
|
|
440 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
441 |
|
|
|
442 |
|
|
|
443 |
## Define different experiments |
|
|
444 |
# 1010 - HDF+LSTM |
|
|
445 |
exp='1010' |
|
|
446 |
AUC_test={} |
|
|
447 |
Accuracy_test={} |
|
|
448 |
PR_auc={} |
|
|
449 |
Sensitivity_test={} |
|
|
450 |
Specificity_test={} |
|
|
451 |
average_precision={} |
|
|
452 |
F1_score={} |
|
|
453 |
cost_saved={} |
|
|
454 |
|
|
|
455 |
#Set Params |
|
|
456 |
W_classA=0 #Dummy visit weights |
|
|
457 |
W_classB=1 #No readmission class weight |
|
|
458 |
W_classC=1 #Readmission class weight |
|
|
459 |
E_pochs=80 # Traning epochs |
|
|
460 |
B_size=32 # Batch size |
|
|
461 |
T_size=0.3 # Samples used for testing |
|
|
462 |
NN_nodes=[6,3,1] # Number of nodes in the NN |
|
|
463 |
N_iter=10 |
|
|
464 |
|
|
|
465 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
466 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
467 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
468 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
469 |
Sample_weight=Sample_weight.reshape(X.shape[0],N_visits,1) |
|
|
470 |
Visits=np.array(VisitIds) |
|
|
471 |
Visits=Visits.reshape(X.shape[0],N_visits,1) |
|
|
472 |
|
|
|
473 |
for iter_nm in range(0,N_iter): |
|
|
474 |
print('Iteration ',iter_nm) |
|
|
475 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
476 |
Sample_weight_train=Sample_weight_train.reshape(len(Sample_weight_train),N_visits) |
|
|
477 |
model = Sequential() |
|
|
478 |
model.add(TimeDistributed(Dense(NN_nodes[0], activation='sigmoid'), input_shape=(N_visits, X.shape[2]))) |
|
|
479 |
model.add(LSTM(NN_nodes[1], return_sequences=True)) |
|
|
480 |
model.add(TimeDistributed(Dense(NN_nodes[2], activation='sigmoid'))) |
|
|
481 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='temporal', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
482 |
print(model.summary()) |
|
|
483 |
#np.random.seed(1337) |
|
|
484 |
print(model.summary()) |
|
|
485 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
486 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
487 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
488 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
489 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
490 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
491 |
|
|
|
492 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
493 |
|
|
|
494 |
## Define different experiments |
|
|
495 |
# 1101 - HDF+MDF+CA |
|
|
496 |
exp='1101' |
|
|
497 |
AUC_test={} |
|
|
498 |
Accuracy_test={} |
|
|
499 |
PR_auc={} |
|
|
500 |
Sensitivity_test={} |
|
|
501 |
Specificity_test={} |
|
|
502 |
average_precision={} |
|
|
503 |
F1_score={} |
|
|
504 |
cost_saved={} |
|
|
505 |
#Set Params |
|
|
506 |
W_classA=0 #Dummy visit weights |
|
|
507 |
W_classB=1 #No readmission class weight |
|
|
508 |
W_classC=3 #Readmission class weight |
|
|
509 |
E_pochs=80 # Traning epochs |
|
|
510 |
B_size=32*N_visits # Batch size |
|
|
511 |
T_size=0.3 # Samples used for testing |
|
|
512 |
NN_nodes=[128,64,1] # Number of nodes in the NN |
|
|
513 |
N_iter=10 |
|
|
514 |
|
|
|
515 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
516 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
517 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
518 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
519 |
Visits=np.array(VisitIds) |
|
|
520 |
a,b,c=X.shape |
|
|
521 |
X=X.reshape(a*b,c) |
|
|
522 |
Y=Y.reshape(a*b,1) |
|
|
523 |
Sample_weight=Sample_weight.ravel() |
|
|
524 |
Visits=Visits.reshape(a*N_visits,1) |
|
|
525 |
ind=np.where(Sample_weight==0) |
|
|
526 |
X=np.delete(X,ind,0) |
|
|
527 |
Y=np.delete(Y,ind,0) |
|
|
528 |
Sample_weight=np.delete(Sample_weight,ind,0) |
|
|
529 |
Visits=np.delete(Visits,ind,0) |
|
|
530 |
for iter_nm in range(0,N_iter): |
|
|
531 |
print('Iteration ',iter_nm) |
|
|
532 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
533 |
model = Sequential() |
|
|
534 |
model.add(Dense(NN_nodes[0], activation='sigmoid', input_dim=c)) |
|
|
535 |
model.add(Dense(NN_nodes[1], activation='sigmoid')) |
|
|
536 |
model.add(Dense(NN_nodes[2], activation='sigmoid')) |
|
|
537 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='None', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
538 |
print(model.summary()) |
|
|
539 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
540 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
541 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
542 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
543 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
544 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
545 |
|
|
|
546 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
547 |
|
|
|
548 |
## Define different experiments |
|
|
549 |
# 1101 - HDF+MDF |
|
|
550 |
exp='1100' |
|
|
551 |
AUC_test={} |
|
|
552 |
Accuracy_test={} |
|
|
553 |
PR_auc={} |
|
|
554 |
Sensitivity_test={} |
|
|
555 |
Specificity_test={} |
|
|
556 |
average_precision={} |
|
|
557 |
F1_score={} |
|
|
558 |
cost_saved={} |
|
|
559 |
#Set Params |
|
|
560 |
W_classA=0 #Dummy visit weights |
|
|
561 |
W_classB=1 #No readmission class weight |
|
|
562 |
W_classC=1 #Readmission class weight |
|
|
563 |
E_pochs=80 # Traning epochs |
|
|
564 |
B_size=32*N_visits # Batch size |
|
|
565 |
T_size=0.3 # Samples used for testing |
|
|
566 |
NN_nodes=[128,64,1] # Number of nodes in the NN |
|
|
567 |
N_iter=10 |
|
|
568 |
|
|
|
569 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
570 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
571 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
572 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
573 |
Visits=np.array(VisitIds) |
|
|
574 |
a,b,c=X.shape |
|
|
575 |
X=X.reshape(a*b,c) |
|
|
576 |
Y=Y.reshape(a*b,1) |
|
|
577 |
Sample_weight=Sample_weight.ravel() |
|
|
578 |
Visits=Visits.reshape(a*N_visits,1) |
|
|
579 |
ind=np.where(Sample_weight==0) |
|
|
580 |
X=np.delete(X,ind,0) |
|
|
581 |
Y=np.delete(Y,ind,0) |
|
|
582 |
Sample_weight=np.delete(Sample_weight,ind,0) |
|
|
583 |
Visits=np.delete(Visits,ind,0) |
|
|
584 |
for iter_nm in range(0,N_iter): |
|
|
585 |
print('Iteration ',iter_nm) |
|
|
586 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
587 |
model = Sequential() |
|
|
588 |
model.add(Dense(NN_nodes[0], activation='sigmoid', input_dim=c)) |
|
|
589 |
model.add(Dense(NN_nodes[1], activation='sigmoid')) |
|
|
590 |
model.add(Dense(NN_nodes[2], activation='sigmoid')) |
|
|
591 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='None', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
592 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
593 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.3, callbacks=[es]) |
|
|
594 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
595 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
596 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
597 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
598 |
|
|
|
599 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
600 |
|
|
|
601 |
|
|
|
602 |
## Define different experiments |
|
|
603 |
# 1001 - HDF+CA |
|
|
604 |
exp='1001' |
|
|
605 |
AUC_test={} |
|
|
606 |
Accuracy_test={} |
|
|
607 |
PR_auc={} |
|
|
608 |
Sensitivity_test={} |
|
|
609 |
Specificity_test={} |
|
|
610 |
average_precision={} |
|
|
611 |
F1_score={} |
|
|
612 |
cost_saved={} |
|
|
613 |
#Set Params |
|
|
614 |
W_classA=0 #Dummy visit weights |
|
|
615 |
W_classB=1 #No readmission class weight |
|
|
616 |
W_classC=3 #Readmission class weight |
|
|
617 |
E_pochs=80 # Traning epochs |
|
|
618 |
B_size=32*N_visits # Batch size |
|
|
619 |
T_size=0.3 # Samples used for testing |
|
|
620 |
NN_nodes=[6,3,1] # Number of nodes in the NN |
|
|
621 |
N_iter=10 |
|
|
622 |
|
|
|
623 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
624 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
625 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
626 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
627 |
Visits=np.array(VisitIds) |
|
|
628 |
a,b,c=X.shape |
|
|
629 |
X=X.reshape(a*b,c) |
|
|
630 |
Y=Y.reshape(a*b,1) |
|
|
631 |
Sample_weight=Sample_weight.ravel() |
|
|
632 |
Visits=Visits.reshape(a*N_visits,1) |
|
|
633 |
ind=np.where(Sample_weight==0) |
|
|
634 |
X=np.delete(X,ind,0) |
|
|
635 |
Y=np.delete(Y,ind,0) |
|
|
636 |
Sample_weight=np.delete(Sample_weight,ind,0) |
|
|
637 |
Visits=np.delete(Visits,ind,0) |
|
|
638 |
for iter_nm in range(0,N_iter): |
|
|
639 |
print('Iteration ',iter_nm) |
|
|
640 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
641 |
model = Sequential() |
|
|
642 |
model.add(Dense(NN_nodes[0], activation='sigmoid', input_dim=c)) |
|
|
643 |
model.add(Dense(NN_nodes[1], activation='sigmoid')) |
|
|
644 |
model.add(Dense(NN_nodes[2], activation='sigmoid')) |
|
|
645 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='None', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
646 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
647 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
648 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
649 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
650 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
651 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
652 |
|
|
|
653 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
654 |
|
|
|
655 |
|
|
|
656 |
## Define different experiments |
|
|
657 |
# 1000 - HDF only |
|
|
658 |
exp='1000' |
|
|
659 |
AUC_test={} |
|
|
660 |
Accuracy_test={} |
|
|
661 |
PR_auc={} |
|
|
662 |
Sensitivity_test={} |
|
|
663 |
Specificity_test={} |
|
|
664 |
average_precision={} |
|
|
665 |
F1_score={} |
|
|
666 |
cost_saved={} |
|
|
667 |
#Set Params |
|
|
668 |
W_classA=0 #Dummy visit weights |
|
|
669 |
W_classB=1 #No readmission class weight |
|
|
670 |
W_classC=1 #Readmission class weight |
|
|
671 |
E_pochs=80 # Traning epochs |
|
|
672 |
B_size=32*N_visits # Batch size |
|
|
673 |
T_size=0.3 # Samples used for testing |
|
|
674 |
NN_nodes=[6,3,1] # Number of nodes in the NN |
|
|
675 |
N_iter=10 |
|
|
676 |
|
|
|
677 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
678 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
679 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
680 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
681 |
Visits=np.array(VisitIds) |
|
|
682 |
a,b,c=X.shape |
|
|
683 |
X=X.reshape(a*b,c) |
|
|
684 |
Y=Y.reshape(a*b,1) |
|
|
685 |
Sample_weight=Sample_weight.ravel() |
|
|
686 |
Visits=Visits.reshape(a*N_visits,1) |
|
|
687 |
ind=np.where(Sample_weight==0) |
|
|
688 |
X=np.delete(X,ind,0) |
|
|
689 |
Y=np.delete(Y,ind,0) |
|
|
690 |
Sample_weight=np.delete(Sample_weight,ind,0) |
|
|
691 |
Visits=np.delete(Visits,ind,0) |
|
|
692 |
for iter_nm in range(0,N_iter): |
|
|
693 |
print('Iteration ',iter_nm) |
|
|
694 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
695 |
model = Sequential() |
|
|
696 |
model.add(Dense(NN_nodes[0], activation='sigmoid', input_dim=c)) |
|
|
697 |
model.add(Dense(NN_nodes[1], activation='sigmoid')) |
|
|
698 |
model.add(Dense(NN_nodes[2], activation='sigmoid')) |
|
|
699 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='None', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
700 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
701 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
702 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
703 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
704 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
705 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
706 |
|
|
|
707 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
708 |
|
|
|
709 |
## Define different experiments |
|
|
710 |
# 1000 - MDF only |
|
|
711 |
exp='0100' |
|
|
712 |
AUC_test={} |
|
|
713 |
Accuracy_test={} |
|
|
714 |
PR_auc={} |
|
|
715 |
Sensitivity_test={} |
|
|
716 |
Specificity_test={} |
|
|
717 |
average_precision={} |
|
|
718 |
F1_score={} |
|
|
719 |
cost_saved={} |
|
|
720 |
#Set Params |
|
|
721 |
W_classA=0 #Dummy visit weights |
|
|
722 |
W_classB=1 #No readmission class weight |
|
|
723 |
W_classC=1 #Readmission class weight |
|
|
724 |
E_pochs=80 # Traning epochs |
|
|
725 |
B_size=32*N_visits # Batch size |
|
|
726 |
T_size=0.3 # Samples used for testing |
|
|
727 |
NN_nodes=[128,64,1] # Number of nodes in the NN |
|
|
728 |
N_iter=10 |
|
|
729 |
|
|
|
730 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
731 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
732 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
733 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
734 |
Visits=np.array(VisitIds) |
|
|
735 |
a,b,c=X.shape |
|
|
736 |
X=X.reshape(a*b,c) |
|
|
737 |
Y=Y.reshape(a*b,1) |
|
|
738 |
Sample_weight=Sample_weight.ravel() |
|
|
739 |
Visits=Visits.reshape(a*N_visits,1) |
|
|
740 |
ind=np.where(Sample_weight==0) |
|
|
741 |
X=np.delete(X,ind,0) |
|
|
742 |
Y=np.delete(Y,ind,0) |
|
|
743 |
Sample_weight=np.delete(Sample_weight,ind,0) |
|
|
744 |
Visits=np.delete(Visits,ind,0) |
|
|
745 |
for iter_nm in range(0,N_iter): |
|
|
746 |
print('Iteration ',iter_nm) |
|
|
747 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
748 |
model = Sequential() |
|
|
749 |
model.add(Dense(NN_nodes[0], activation='sigmoid', input_dim=c)) |
|
|
750 |
model.add(Dense(NN_nodes[1], activation='sigmoid')) |
|
|
751 |
model.add(Dense(NN_nodes[2], activation='sigmoid')) |
|
|
752 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='None', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
753 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
754 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
755 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
756 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
757 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
758 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
759 |
|
|
|
760 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
761 |
|
|
|
762 |
|
|
|
763 |
## Define different experiments |
|
|
764 |
# 0101 - MDF + CA only |
|
|
765 |
exp='0101' |
|
|
766 |
AUC_test={} |
|
|
767 |
Accuracy_test={} |
|
|
768 |
PR_auc={} |
|
|
769 |
Sensitivity_test={} |
|
|
770 |
Specificity_test={} |
|
|
771 |
average_precision={} |
|
|
772 |
F1_score={} |
|
|
773 |
cost_saved={} |
|
|
774 |
#Set Params |
|
|
775 |
W_classA=0 #Dummy visit weights |
|
|
776 |
W_classB=1 #No readmission class weight |
|
|
777 |
W_classC=3 #Readmission class weight |
|
|
778 |
E_pochs=80 # Traning epochs |
|
|
779 |
B_size=32*N_visits # Batch size |
|
|
780 |
T_size=0.3 # Samples used for testing |
|
|
781 |
NN_nodes=[6,3,1] # Number of nodes in the NN |
|
|
782 |
N_iter=10 |
|
|
783 |
|
|
|
784 |
X, Y, Sample_weight,VisitIds=read_data(exp, N_visits) |
|
|
785 |
Sample_weight[Sample_weight==0]=W_classA |
|
|
786 |
Sample_weight[Sample_weight==1]=W_classB |
|
|
787 |
Sample_weight[Sample_weight==2]=W_classC |
|
|
788 |
Visits=np.array(VisitIds) |
|
|
789 |
a,b,c=X.shape |
|
|
790 |
X=X.reshape(a*b,c) |
|
|
791 |
Y=Y.reshape(a*b,1) |
|
|
792 |
Sample_weight=Sample_weight.ravel() |
|
|
793 |
Visits=Visits.reshape(a*N_visits,1) |
|
|
794 |
ind=np.where(Sample_weight==0) |
|
|
795 |
X=np.delete(X,ind,0) |
|
|
796 |
Y=np.delete(Y,ind,0) |
|
|
797 |
Sample_weight=np.delete(Sample_weight,ind,0) |
|
|
798 |
Visits=np.delete(Visits,ind,0) |
|
|
799 |
for iter_nm in range(0,N_iter): |
|
|
800 |
print('Iteration ',iter_nm) |
|
|
801 |
X_train, X_test, Y_train, Y_test, Sample_weight_train, Sample_weight_test, Visit_train, Visit_test = train_test_split(X, Y,Sample_weight,Visits, test_size=T_size, shuffle=True) |
|
|
802 |
model = Sequential() |
|
|
803 |
model.add(Dense(NN_nodes[0], activation='sigmoid', input_dim=c)) |
|
|
804 |
model.add(Dense(NN_nodes[1], activation='sigmoid')) |
|
|
805 |
model.add(Dense(NN_nodes[2], activation='sigmoid')) |
|
|
806 |
model.compile(loss='binary_crossentropy', optimizer='rmsprop',sample_weight_mode='None', metrics=[sensitivity, specificity, ppv, npv, 'accuracy']) |
|
|
807 |
print('Training start', 'for iteration ', iter_nm ) |
|
|
808 |
model.fit(X_train, Y_train, epochs=E_pochs, batch_size=B_size, verbose=0, sample_weight=Sample_weight_train,shuffle=True, validation_split=0.2, callbacks=[es]) |
|
|
809 |
print('Training complete', 'for iteration ', iter_nm ) |
|
|
810 |
print('Evaluation', 'for iteration ', iter_nm ) |
|
|
811 |
Accuracy_test[iter_nm], AUC_test[iter_nm], Sensitivity_test[iter_nm], Specificity_test[iter_nm], PR_auc[iter_nm], F1_score[iter_nm],cost_saved[iter_nm]=model_eval(model, X_test,Y_test, Sample_weight_test,exp,X_train,Y_train,Sample_weight_train) |
|
|
812 |
print('Evaluation complete', 'for iteration ', iter_nm ) |
|
|
813 |
|
|
|
814 |
save_print(AUC_test, Sensitivity_test, Specificity_test, PR_auc,F1_score,cost_saved, exp) |
|
|
815 |
|
|
|
816 |
#print([np.mean(np.fromiter(np.load('cost_saved_1111.npy').item().values(), dtype=float)),np.std(np.fromiter(np.load('cost_saved_1111.npy').item().values(), dtype=float))]) |
|
|
817 |
|
|
|
818 |
AUC_1111=np.fromiter(np.load('AUC_test_1111.npy').item().values(), dtype=float) |
|
|
819 |
AUC_1110=np.fromiter(np.load('AUC_test_1110.npy').item().values(), dtype=float) |
|
|
820 |
AUC_1011=np.fromiter(np.load('AUC_test_1011.npy').item().values(), dtype=float) |
|
|
821 |
AUC_0111=np.fromiter(np.load('AUC_test_0111.npy').item().values(), dtype=float) |
|
|
822 |
AUC_1101=np.fromiter(np.load('AUC_test_1101.npy').item().values(), dtype=float) |
|
|
823 |
|
|
|
824 |
cs_1111=np.fromiter(np.load('cost_saved_1111.npy').item().values(), dtype=float) |
|
|
825 |
cs_1110=np.fromiter(np.load('cost_saved_1110.npy').item().values(), dtype=float) |
|
|
826 |
cs_1011=np.fromiter(np.load('cost_saved_1011.npy').item().values(), dtype=float) |
|
|
827 |
cs_0111=np.fromiter(np.load('cost_saved_0111.npy').item().values(), dtype=float) |
|
|
828 |
cs_1101=np.fromiter(np.load('cost_saved_1101.npy').item().values(), dtype=float) |
|
|
829 |
|
|
|
830 |
f1_1111=np.fromiter(np.load('f1_score_1111.npy').item().values(), dtype=float) |
|
|
831 |
f1_1110=np.fromiter(np.load('f1_score_1110.npy').item().values(), dtype=float) |
|
|
832 |
f1_1011=np.fromiter(np.load('f1_score_1011.npy').item().values(), dtype=float) |
|
|
833 |
f1_0111=np.fromiter(np.load('f1_score_0111.npy').item().values(), dtype=float) |
|
|
834 |
f1_1101=np.fromiter(np.load('f1_score_1101.npy').item().values(), dtype=float) |
|
|
835 |
|
|
|
836 |
|
|
|
837 |
#aucs_mean = [np.mean(AUC_1111), np.mean(AUC_1110)] |
|
|
838 |
#aucs_std = [np.std(AUC_1111), np.std(AUC_1110)] |
|
|
839 |
|
|
|
840 |
df_results = pd.DataFrame(np.array([[np.mean(AUC_1111), np.mean(AUC_1110),np.mean(AUC_0111),np.mean(AUC_1011),np.mean(AUC_1101)], \ |
|
|
841 |
[np.mean(f1_1111), np.mean(f1_1110), np.mean(f1_0111), np.mean(f1_1011), np.mean(f1_1101)], \ |
|
|
842 |
[np.mean(cs_1111), np.mean(cs_1110),np.mean(cs_0111),np.mean(cs_1011),np.mean(cs_1101)], \ |
|
|
843 |
])) |
|
|
844 |
df_std = pd.DataFrame(np.array([[np.std(AUC_1111)/1, np.std(AUC_1110)/1,np.std(AUC_0111)/1,np.std(AUC_1011)/1,np.std(AUC_1101)/1], \ |
|
|
845 |
[np.std(f1_1111)/1, np.std(f1_1110)/1, np.std(f1_0111)/1, np.std(f1_1011)/1, np.std(f1_1101)/1], \ |
|
|
846 |
[np.std(cs_1111)/1, np.std(cs_1110)/1, np.std(cs_0111)/1, np.std(cs_1011)/1, np.std(cs_1101)/1], \ |
|
|
847 |
])) |
|
|
848 |
df_results.index = ['ROC AUC','F1 score','Cost saved'] |
|
|
849 |
|
|
|
850 |
df_results.columns = ['Complete Model', 'Without CA', 'Without HDF', 'Without MDF','Without LSTM'] |
|
|
851 |
#patterns = (('/'),('o')) |
|
|
852 |
colors=['blue','skyblue','silver','gray', 'black'] |
|
|
853 |
fig, ax = plt.subplots() |
|
|
854 |
#plt.rcParams.update({'figure.figsize': [5, 5], 'font.size': 22}) |
|
|
855 |
plt.rcParams.update({'font.size': 20, 'figure.figsize': [10,8]}) |
|
|
856 |
ax = df_results[::-1].plot.barh(ax=ax, xerr=np.array(df_std[::-1]).transpose(),color=colors,width=0.7,capsize=5) |
|
|
857 |
ax.legend(bbox_to_anchor=(0.95, 0.30)) |
|
|
858 |
#ax.set_xlabel('F1 score / Cost Savings') |
|
|
859 |
plt.tight_layout() |
|
|
860 |
#Options |
|
|
861 |
|
|
|
862 |
plt.show() |
|
|
863 |
|
|
|
864 |
plt.savefig('fig3.pdf', format='pdf', dpi=1000) |
|
|
865 |
|
|
|
866 |
|
|
|
867 |
#SIGNIFICANCE TESTS |
|
|
868 |
#label='cost_saved' |
|
|
869 |
#c=np.fromiter(np.load(label+'_1110.npy').item().values(), dtype=float) |
|
|
870 |
#d=np.fromiter(np.load(label+'_1111.npy').item().values(), dtype=float) |
|
|
871 |
#a,b=stats.ttest_ind(c,d) |
|
|
872 |
#print(a,b) |
|
|
873 |
|
|
|
874 |
#import scipy.io as sio |
|
|
875 |
#y_pred = model.predict(X_test).ravel() |
|
|
876 |
#sio.savemat('y_pred_new_review2.mat', {'y_pred':y_pred,'Visit_ID':Visit_test.ravel(),'Y_test':Y_test.ravel(),'Sample':Sample_weight_test.ravel()}) |