import os
import lightning as L
import pandas as pd
from configs.exp import hparams
from datasets.loader.datamodule import EhrDataModule
from datasets.loader.load_los_info import get_los_info
from pipelines import DlPipeline, MlPipeline
def get_latest_file(path):
# Get list of all files in the directory
files = [os.path.join(path, f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]
# Get the file with the latest modification time
latest_file = max(files, key=os.path.getctime)
return latest_file
def run_ml_experiment(config):
los_config = get_los_info(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}')
config.update({"los_info": los_config})
# data
dm = EhrDataModule(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}', batch_size=config["batch_size"])
# train/val/test
pipeline = MlPipeline(config)
trainer = L.Trainer(accelerator="cpu", max_epochs=1, logger=False, num_sanity_val_steps=0)
trainer.test(pipeline, dm)
perf = pipeline.test_performance
return perf
def run_dl_experiment(config):
los_config = get_los_info(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}')
config.update({"los_info": los_config})
# data
dm = EhrDataModule(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}', batch_size=config["batch_size"])
# checkpoint
# checkpoint_path = f'logs/train/{config["dataset"]}/{config["task"]}/{config["model"]}-fold{config["fold"]}-seed{config["seed"]}/checkpoints/best.ckpt'
checkpoint_path = get_latest_file(f'logs/train/{config["dataset"]}/{config["task"]}/{config["model"]}-fold{config["fold"]}-seed{config["seed"]}/checkpoints')
print("checkpoint_path: ", checkpoint_path)
if "time_aware" in config and config["time_aware"] == True:
checkpoint_path = f'logs/train/{config["dataset"]}/{config["task"]}/{config["model"]}-fold{config["fold"]}-seed{config["seed"]}-ta/checkpoints/best.ckpt'
# train/val/test
pipeline = DlPipeline(config)
trainer = L.Trainer(accelerator="cpu", max_epochs=1, logger=False, num_sanity_val_steps=0)
trainer.test(pipeline, dm, ckpt_path=checkpoint_path)
perf = pipeline.test_performance
return perf
if __name__ == "__main__":
best_hparams = hparams # [TO-SPECIFY]
performance_table = {'dataset':[], 'task': [], 'model': [], 'fold': [], 'seed': [], 'accuracy': [], 'auroc': [], 'auprc': [], 'f1': [], 'minpse': []}
for i in range(0, len(best_hparams)):
# for i in range(0, 1):
config = best_hparams[i]
print(f"Testing... {i}/{len(best_hparams)}")
run_func = run_ml_experiment if config["model"] in ["RF", "DT", "GBDT", "XGBoost", "CatBoost", "LR", "LightGBM"] else run_dl_experiment
seeds = [0] # [0,1,2,3,4]
folds = ['nshot']
for fold in folds:
config["fold"] = fold
for seed in seeds:
config["seed"] = seed
perf = run_func(config)
print(f"{config}, Test Performance: {perf}")
if "time_aware" in config and config["time_aware"] == True:
model_name = config['model']+"_ta"
else:
model_name = config['model']
performance_table['dataset'].append(config['dataset'])
performance_table['task'].append(config['task'])
performance_table['model'].append(model_name)
performance_table['fold'].append(config['fold'])
performance_table['seed'].append(config['seed'])
if config['task'] == 'outcome':
performance_table['accuracy'].append(perf['accuracy'])
performance_table['auroc'].append(perf['auroc'])
performance_table['auprc'].append(perf['auprc'])
performance_table['f1'].append(perf['f1'])
performance_table['minpse'].append(perf['minpse'])
pd.DataFrame(performance_table).to_csv('ijcai24_ml_baselines_20240108.csv', index=False) # [TO-SPECIFY]