[0f1df3]: / AICare-baselines / models / aicare.py

Download this file

450 lines (356 with data), 19.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import torch
from torch import nn
import torch.nn.functional as F
import math
import copy
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence
class Sparsemax(nn.Module):
"""Sparsemax function."""
def __init__(self, dim=None):
super(Sparsemax, self).__init__()
self.dim = -1 if dim is None else dim
def forward(self, input, device='cuda'):
original_size = input.size()
input = input.view(-1, input.size(self.dim))
dim = 1
number_of_logits = input.size(dim)
input = input - torch.max(input, dim=dim, keepdim=True)[0].expand_as(input)
zs = torch.sort(input=input, dim=dim, descending=True)[0]
range = torch.arange(start=1, end=number_of_logits+1, device=device, dtype=torch.float32).view(1, -1)
range = range.expand_as(zs)
bound = 1 + range * zs
cumulative_sum_zs = torch.cumsum(zs, dim)
is_gt = torch.gt(bound, cumulative_sum_zs).type(input.type())
k = torch.max(is_gt * range, dim, keepdim=True)[0]
zs_sparse = is_gt * zs
taus = (torch.sum(zs_sparse, dim, keepdim=True) - 1) / k
taus = taus.expand_as(input)
self.output = torch.max(torch.zeros_like(input), input - taus)
output = self.output.view(original_size)
return output
def backward(self, grad_output):
dim = 1
nonzeros = torch.ne(self.output, 0)
sum = torch.sum(grad_output * nonzeros, dim=dim) / torch.sum(nonzeros, dim=dim)
self.grad_input = nonzeros * (grad_output - sum.expand_as(grad_output))
return self.grad_input
class SingleAttention(nn.Module):
def __init__(self, attention_input_dim, attention_hidden_dim, attention_type='add', demographic_dim=12, time_aware=False, use_demographic=False):
super(SingleAttention, self).__init__()
self.attention_type = attention_type
self.attention_hidden_dim = attention_hidden_dim
self.attention_input_dim = attention_input_dim
self.use_demographic = use_demographic
self.demographic_dim = demographic_dim
self.time_aware = time_aware
# batch_time = torch.arange(0, batch_mask.size()[1], dtype=torch.float32).reshape(1, batch_mask.size()[1], 1)
# batch_time = batch_time.repeat(batch_mask.size()[0], 1, 1)
if attention_type == 'add':
if self.time_aware == True:
# self.Wx = nn.Parameter(torch.randn(attention_input_dim+1, attention_hidden_dim))
self.Wx = nn.Parameter(torch.randn(attention_input_dim, attention_hidden_dim))
self.Wtime_aware = nn.Parameter(torch.randn(1, attention_hidden_dim))
nn.init.kaiming_uniform_(self.Wtime_aware, a=math.sqrt(5))
else:
self.Wx = nn.Parameter(torch.randn(attention_input_dim, attention_hidden_dim))
self.Wt = nn.Parameter(torch.randn(attention_input_dim, attention_hidden_dim))
self.Wd = nn.Parameter(torch.randn(demographic_dim, attention_hidden_dim))
self.bh = nn.Parameter(torch.zeros(attention_hidden_dim,))
self.Wa = nn.Parameter(torch.randn(attention_hidden_dim, 1))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wd, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wx, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wt, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
elif attention_type == 'mul':
self.Wa = nn.Parameter(torch.randn(attention_input_dim, attention_input_dim))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
elif attention_type == 'concat':
if self.time_aware == True:
self.Wh = nn.Parameter(torch.randn(2*attention_input_dim+1, attention_hidden_dim))
else:
self.Wh = nn.Parameter(torch.randn(2*attention_input_dim, attention_hidden_dim))
self.Wa = nn.Parameter(torch.randn(attention_hidden_dim, 1))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wh, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
else:
raise RuntimeError('Wrong attention type.')
self.tanh = nn.Tanh()
self.softmax = nn.Softmax()
def forward(self, input, demo=None):
batch_size, time_step, input_dim = input.size() # batch_size * time_step * hidden_dim(i)
#assert(input_dim == self.input_dim)
# time_decays = torch.zeros((time_step,time_step)).to(device)# t*t
# for this_time in range(time_step):
# for pre_time in range(time_step):
# if pre_time > this_time:
# break
# time_decays[this_time][pre_time] = torch.tensor(this_time - pre_time, dtype=torch.float32).to(device)
# b_time_decays = tile(time_decays, 0, batch_size).view(batch_size,time_step,time_step).unsqueeze(-1).to(device)# b t t 1
time_decays = torch.tensor(range(47,-1,-1), dtype=torch.float32).unsqueeze(-1).unsqueeze(0).to(self.device)# 1*t*1
b_time_decays = time_decays.repeat(batch_size,1,1)# b t 1
if self.attention_type == 'add': #B*T*I @ H*I
q = torch.matmul(input[:,-1,:], self.Wt)# b h
q = torch.reshape(q, (batch_size, 1, self.attention_hidden_dim)) #B*1*H
if self.time_aware == True:
# k_input = torch.cat((input, time), dim=-1)
k = torch.matmul(input, self.Wx)#b t h
# k = torch.reshape(k, (batch_size, 1, time_step, self.attention_hidden_dim)) #B*1*T*H
time_hidden = torch.matmul(b_time_decays, self.Wtime_aware)# b t h
else:
k = torch.matmul(input, self.Wx)# b t h
# k = torch.reshape(k, (batch_size, 1, time_step, self.attention_hidden_dim)) #B*1*T*H
if self.use_demographic == True:
d = torch.matmul(demo, self.Wd) #B*H
d = torch.reshape(d, (batch_size, 1, self.attention_hidden_dim)) # b 1 h
h = q + k + self.bh # b t h
if self.time_aware == True:
h += time_hidden
h = self.tanh(h) #B*T*H
e = torch.matmul(h, self.Wa) + self.ba #B*T*1
e = torch.reshape(e, (batch_size, time_step))# b t
elif self.attention_type == 'mul':
e = torch.matmul(input[:,-1,:], self.Wa)#b i
e = torch.matmul(e.unsqueeze(1), input.permute(0,2,1)).squeeze() + self.ba #b t
elif self.attention_type == 'concat':
q = input[:,-1,:].unsqueeze(1).repeat(1,time_step,1)# b t i
k = input
c = torch.cat((q, k), dim=-1) #B*T*2I
if self.time_aware == True:
c = torch.cat((c, b_time_decays), dim=-1) #B*T*2I+1
h = torch.matmul(c, self.Wh)
h = self.tanh(h)
e = torch.matmul(h, self.Wa) + self.ba #B*T*1
e = torch.reshape(e, (batch_size, time_step)) # b t
a = self.softmax(e) #B*T
v = torch.matmul(a.unsqueeze(1), input).squeeze() #B*I
return v, a
class FinalAttentionQKV(nn.Module):
def __init__(self, attention_input_dim, attention_hidden_dim, attention_type='add', dropout=None):
super(FinalAttentionQKV, self).__init__()
self.attention_type = attention_type
self.attention_hidden_dim = attention_hidden_dim
self.attention_input_dim = attention_input_dim
self.W_q = nn.Linear(attention_input_dim, attention_hidden_dim)
self.W_k = nn.Linear(attention_input_dim, attention_hidden_dim)
self.W_v = nn.Linear(attention_input_dim, attention_hidden_dim)
self.W_out = nn.Linear(attention_hidden_dim, 1)
self.b_in = nn.Parameter(torch.zeros(1,))
self.b_out = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.W_q.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_k.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_v.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_out.weight, a=math.sqrt(5))
self.Wh = nn.Parameter(torch.randn(2*attention_input_dim, attention_hidden_dim))
self.Wa = nn.Parameter(torch.randn(attention_hidden_dim, 1))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wh, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
self.dropout = nn.Dropout(p=dropout)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax(dim=1)
self.sigmoid = nn.Sigmoid()
self.sparsemax = Sparsemax()
def forward(self, input):
batch_size, time_step, input_dim = input.size() # batch_size * input_dim + 1 * hidden_dim(i)
input_q = self.W_q(torch.mean(input,1)) # b h
input_k = self.W_k(input[:,:-1,:])# b t h
input_v = self.W_v(input[:,:-1,:])# b t h
if self.attention_type == 'add': #B*T*I @ H*I
q = torch.reshape(input_q, (batch_size, 1, self.attention_hidden_dim)) #B*1*H
h = q + input_k + self.b_in # b t h
h = self.tanh(h) #B*T*H
e = self.W_out(h) # b t 1
e = torch.reshape(e, (batch_size, time_step))# b t
elif self.attention_type == 'mul':
q = torch.reshape(input_q, (batch_size, self.attention_hidden_dim, 1)) #B*h 1
e = torch.matmul(input_k, q).squeeze()#b t
elif self.attention_type == 'concat':
q = input_q.unsqueeze(1).repeat(1,time_step,1)# b t h
k = input_k
c = torch.cat((q, k), dim=-1) #B*T*2I
h = torch.matmul(c, self.Wh)
h = self.tanh(h)
e = torch.matmul(h, self.Wa) + self.ba #B*T*1
e = torch.reshape(e, (batch_size, time_step)) # b t
a = self.softmax(e) #B*T
if self.dropout is not None:
a = self.dropout(a)
v = torch.matmul(a.unsqueeze(1), input_v).squeeze() #B*I
return v, a
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
# def tile(a, dim, n_tile):
# init_dim = a.size(dim)
# repeat_idx = [1] * a.dim()
# repeat_idx[dim] = n_tile
# a = a.repeat(*(repeat_idx))
# order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])).to(self.device)
# return torch.index_select(a, dim, order_index).to(self.device)
class PositionwiseFeedForward(nn.Module): # new added
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x)))), None
class PositionalEncoding(nn.Module): # new added / not use anymore
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=400):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + torch.autograd.Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0 # 下三角矩阵
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)# b h t d_k
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k) # b h t t
if mask is not None:# 1 1 t t
scores = scores.masked_fill(mask == 0, -1e9)# b h t t 下三角
p_attn = F.softmax(scores, dim = -1)# b h t t
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn # b h t v (d_k)
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, self.d_k * self.h), 3)
self.final_linear = nn.Linear(d_model, d_model)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1) # 1 1 t t
nbatches = query.size(0)# b
input_dim = query.size(1)# i+1
feature_dim = query.size(-1)# i+1
#input size -> # batch_size * d_input * hidden_dim
# d_model => h * d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))] # b num_head d_input d_k
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)# b num_head d_input d_v (d_k)
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)# batch_size * d_input * hidden_dim
#DeCov
DeCov_contexts = x.transpose(0, 1).transpose(1, 2) # I+1 H B
# print(DeCov_contexts.shape)
Covs = cov(DeCov_contexts[0,:,:])
DeCov_loss = 0.5 * (torch.norm(Covs, p = 'fro')**2 - torch.norm(torch.diag(Covs))**2 )
for i in range(17+1 -1):
Covs = cov(DeCov_contexts[i+1,:,:])
DeCov_loss += 0.5 * (torch.norm(Covs, p = 'fro')**2 - torch.norm(torch.diag(Covs))**2 )
return self.final_linear(x), DeCov_loss
class LayerNorm(nn.Module):
def __init__(self, size, eps=1e-7):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(size))
self.b_2 = nn.Parameter(torch.zeros(size))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
def cov(m, y=None):
if y is not None:
m = torch.cat((m, y), dim=0)
m_exp = torch.mean(m, dim=1)
x = m - m_exp[:, None]
cov = 1 / (x.size(1) - 1) * x.mm(x.t())
return cov
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
returned_value = sublayer(self.norm(x))
return x + self.dropout(returned_value[0]) , returned_value[1]
class AICare(nn.Module):
def __init__(self, lab_dim=17, demo_dim=4, hidden_dim=32, d_model=32, MHD_num_head=4, d_ff=64, device='cuda', keep_prob=0.5, **kwargs):
super(AICare, self).__init__()
# hyperparameters
self.lab_dim = lab_dim
self.hidden_dim = hidden_dim # d_model
self.d_model = d_model
self.MHD_num_head = MHD_num_head
self.device = device
self.d_ff = d_ff
self.keep_prob = keep_prob
# layers
self.PositionalEncoding = PositionalEncoding(self.d_model, dropout = 0, max_len = 400)
# self.GRUs = clones(nn.GRU(1, self.hidden_dim, batch_first = True), self.lab_dim)
self.GRUs = clones(nn.RNN(1, self.hidden_dim, bidirectional = True, batch_first = True), self.lab_dim)
self.LastStepAttentions = clones(SingleAttention(self.hidden_dim, 8, attention_type='concat', demographic_dim=12, time_aware=True, use_demographic=False),self.lab_dim)
self.FinalAttentionQKV = FinalAttentionQKV(self.hidden_dim, self.hidden_dim, attention_type='mul',dropout = 1 - self.keep_prob)
self.MultiHeadedAttention = MultiHeadedAttention(self.MHD_num_head, self.d_model,dropout = 1 - self.keep_prob)
self.SublayerConnection = SublayerConnection(self.d_model, dropout = 1 - self.keep_prob)
self.PositionwiseFeedForward = PositionwiseFeedForward(self.d_model, self.d_ff, dropout=0.1)
self.demo_proj_main = nn.Linear(demo_dim, self.hidden_dim)
self.demo_proj = nn.Linear(demo_dim, self.hidden_dim)
self.output_proj = nn.Linear(self.hidden_dim*2, self.hidden_dim)
self.dropout = nn.Dropout(p = 1 - self.keep_prob)
self.tanh=nn.Tanh()
self.softmax = nn.Softmax()
self.sigmoid = nn.Sigmoid()
self.relu=nn.ReLU()
def forward(self, input, demo_input, mask, **kwargs):
# input shape [batch_size, timestep, feature_dim]
demo_main = self.tanh(self.demo_proj_main(demo_input)).unsqueeze(1)# b hidden_dim
batch_size = input.size(0)
time_step = input.size(1)
feature_dim = input.size(2)
assert(feature_dim == self.lab_dim)# input Tensor : 256 * 48 * 76
assert(self.d_model % self.MHD_num_head == 0)
lens = mask.sum(dim=1)
GRU_embeded_input = torch.sum(self.GRUs[0](pack_padded_sequence(input[:,:,0].unsqueeze(-1), lens.cpu(), batch_first=True, enforce_sorted=False))[1], 0).squeeze().unsqueeze(1) # b 1 h
# print(GRU_embeded_input.shape)
for i in range(feature_dim-1):
embeded_input = torch.sum(self.GRUs[i+1](pack_padded_sequence(input[:,:,i+1].unsqueeze(-1), lens.cpu(), batch_first=True, enforce_sorted=False))[1], 0).squeeze().unsqueeze(1) # b 1 h
GRU_embeded_input = torch.cat((GRU_embeded_input, embeded_input), 1)
# print(demo_main.shape)
GRU_embeded_input = torch.cat((GRU_embeded_input, demo_main), 1)# b i+1 h
posi_input = self.dropout(GRU_embeded_input) # batch_size * d_input * hidden_dim
weighted_contexts = self.FinalAttentionQKV(posi_input)[0]
combined_hidden = torch.cat((weighted_contexts, \
demo_main.squeeze(1)),-1)#b n h
out = self.output_proj(combined_hidden)
# out = self.dropout(out)
# output = self.output(self.dropout(combined_hidden))# b 1
# output = self.sigmoid(output)
# return output
return out