import torch
from torch import nn
import torch.nn.functional as F
import math
import copy
import numpy as np
from torch.nn.utils.rnn import pack_padded_sequence
class Sparsemax(nn.Module):
"""Sparsemax function."""
def __init__(self, dim=None):
super(Sparsemax, self).__init__()
self.dim = -1 if dim is None else dim
def forward(self, input, device='cuda'):
original_size = input.size()
input = input.view(-1, input.size(self.dim))
dim = 1
number_of_logits = input.size(dim)
input = input - torch.max(input, dim=dim, keepdim=True)[0].expand_as(input)
zs = torch.sort(input=input, dim=dim, descending=True)[0]
range = torch.arange(start=1, end=number_of_logits+1, device=device, dtype=torch.float32).view(1, -1)
range = range.expand_as(zs)
bound = 1 + range * zs
cumulative_sum_zs = torch.cumsum(zs, dim)
is_gt = torch.gt(bound, cumulative_sum_zs).type(input.type())
k = torch.max(is_gt * range, dim, keepdim=True)[0]
zs_sparse = is_gt * zs
taus = (torch.sum(zs_sparse, dim, keepdim=True) - 1) / k
taus = taus.expand_as(input)
self.output = torch.max(torch.zeros_like(input), input - taus)
output = self.output.view(original_size)
return output
def backward(self, grad_output):
dim = 1
nonzeros = torch.ne(self.output, 0)
sum = torch.sum(grad_output * nonzeros, dim=dim) / torch.sum(nonzeros, dim=dim)
self.grad_input = nonzeros * (grad_output - sum.expand_as(grad_output))
return self.grad_input
class SingleAttention(nn.Module):
def __init__(self, attention_input_dim, attention_hidden_dim, attention_type='add', demographic_dim=12, time_aware=False, use_demographic=False):
super(SingleAttention, self).__init__()
self.attention_type = attention_type
self.attention_hidden_dim = attention_hidden_dim
self.attention_input_dim = attention_input_dim
self.use_demographic = use_demographic
self.demographic_dim = demographic_dim
self.time_aware = time_aware
# batch_time = torch.arange(0, batch_mask.size()[1], dtype=torch.float32).reshape(1, batch_mask.size()[1], 1)
# batch_time = batch_time.repeat(batch_mask.size()[0], 1, 1)
if attention_type == 'add':
if self.time_aware == True:
# self.Wx = nn.Parameter(torch.randn(attention_input_dim+1, attention_hidden_dim))
self.Wx = nn.Parameter(torch.randn(attention_input_dim, attention_hidden_dim))
self.Wtime_aware = nn.Parameter(torch.randn(1, attention_hidden_dim))
nn.init.kaiming_uniform_(self.Wtime_aware, a=math.sqrt(5))
else:
self.Wx = nn.Parameter(torch.randn(attention_input_dim, attention_hidden_dim))
self.Wt = nn.Parameter(torch.randn(attention_input_dim, attention_hidden_dim))
self.Wd = nn.Parameter(torch.randn(demographic_dim, attention_hidden_dim))
self.bh = nn.Parameter(torch.zeros(attention_hidden_dim,))
self.Wa = nn.Parameter(torch.randn(attention_hidden_dim, 1))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wd, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wx, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wt, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
elif attention_type == 'mul':
self.Wa = nn.Parameter(torch.randn(attention_input_dim, attention_input_dim))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
elif attention_type == 'concat':
if self.time_aware == True:
self.Wh = nn.Parameter(torch.randn(2*attention_input_dim+1, attention_hidden_dim))
else:
self.Wh = nn.Parameter(torch.randn(2*attention_input_dim, attention_hidden_dim))
self.Wa = nn.Parameter(torch.randn(attention_hidden_dim, 1))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wh, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
else:
raise RuntimeError('Wrong attention type.')
self.tanh = nn.Tanh()
self.softmax = nn.Softmax()
def forward(self, input, demo=None):
batch_size, time_step, input_dim = input.size() # batch_size * time_step * hidden_dim(i)
#assert(input_dim == self.input_dim)
# time_decays = torch.zeros((time_step,time_step)).to(device)# t*t
# for this_time in range(time_step):
# for pre_time in range(time_step):
# if pre_time > this_time:
# break
# time_decays[this_time][pre_time] = torch.tensor(this_time - pre_time, dtype=torch.float32).to(device)
# b_time_decays = tile(time_decays, 0, batch_size).view(batch_size,time_step,time_step).unsqueeze(-1).to(device)# b t t 1
time_decays = torch.tensor(range(47,-1,-1), dtype=torch.float32).unsqueeze(-1).unsqueeze(0).to(self.device)# 1*t*1
b_time_decays = time_decays.repeat(batch_size,1,1)# b t 1
if self.attention_type == 'add': #B*T*I @ H*I
q = torch.matmul(input[:,-1,:], self.Wt)# b h
q = torch.reshape(q, (batch_size, 1, self.attention_hidden_dim)) #B*1*H
if self.time_aware == True:
# k_input = torch.cat((input, time), dim=-1)
k = torch.matmul(input, self.Wx)#b t h
# k = torch.reshape(k, (batch_size, 1, time_step, self.attention_hidden_dim)) #B*1*T*H
time_hidden = torch.matmul(b_time_decays, self.Wtime_aware)# b t h
else:
k = torch.matmul(input, self.Wx)# b t h
# k = torch.reshape(k, (batch_size, 1, time_step, self.attention_hidden_dim)) #B*1*T*H
if self.use_demographic == True:
d = torch.matmul(demo, self.Wd) #B*H
d = torch.reshape(d, (batch_size, 1, self.attention_hidden_dim)) # b 1 h
h = q + k + self.bh # b t h
if self.time_aware == True:
h += time_hidden
h = self.tanh(h) #B*T*H
e = torch.matmul(h, self.Wa) + self.ba #B*T*1
e = torch.reshape(e, (batch_size, time_step))# b t
elif self.attention_type == 'mul':
e = torch.matmul(input[:,-1,:], self.Wa)#b i
e = torch.matmul(e.unsqueeze(1), input.permute(0,2,1)).squeeze() + self.ba #b t
elif self.attention_type == 'concat':
q = input[:,-1,:].unsqueeze(1).repeat(1,time_step,1)# b t i
k = input
c = torch.cat((q, k), dim=-1) #B*T*2I
if self.time_aware == True:
c = torch.cat((c, b_time_decays), dim=-1) #B*T*2I+1
h = torch.matmul(c, self.Wh)
h = self.tanh(h)
e = torch.matmul(h, self.Wa) + self.ba #B*T*1
e = torch.reshape(e, (batch_size, time_step)) # b t
a = self.softmax(e) #B*T
v = torch.matmul(a.unsqueeze(1), input).squeeze() #B*I
return v, a
class FinalAttentionQKV(nn.Module):
def __init__(self, attention_input_dim, attention_hidden_dim, attention_type='add', dropout=None):
super(FinalAttentionQKV, self).__init__()
self.attention_type = attention_type
self.attention_hidden_dim = attention_hidden_dim
self.attention_input_dim = attention_input_dim
self.W_q = nn.Linear(attention_input_dim, attention_hidden_dim)
self.W_k = nn.Linear(attention_input_dim, attention_hidden_dim)
self.W_v = nn.Linear(attention_input_dim, attention_hidden_dim)
self.W_out = nn.Linear(attention_hidden_dim, 1)
self.b_in = nn.Parameter(torch.zeros(1,))
self.b_out = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.W_q.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_k.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_v.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.W_out.weight, a=math.sqrt(5))
self.Wh = nn.Parameter(torch.randn(2*attention_input_dim, attention_hidden_dim))
self.Wa = nn.Parameter(torch.randn(attention_hidden_dim, 1))
self.ba = nn.Parameter(torch.zeros(1,))
nn.init.kaiming_uniform_(self.Wh, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.Wa, a=math.sqrt(5))
self.dropout = nn.Dropout(p=dropout)
self.tanh = nn.Tanh()
self.softmax = nn.Softmax(dim=1)
self.sigmoid = nn.Sigmoid()
self.sparsemax = Sparsemax()
def forward(self, input):
batch_size, time_step, input_dim = input.size() # batch_size * input_dim + 1 * hidden_dim(i)
input_q = self.W_q(torch.mean(input,1)) # b h
input_k = self.W_k(input[:,:-1,:])# b t h
input_v = self.W_v(input[:,:-1,:])# b t h
if self.attention_type == 'add': #B*T*I @ H*I
q = torch.reshape(input_q, (batch_size, 1, self.attention_hidden_dim)) #B*1*H
h = q + input_k + self.b_in # b t h
h = self.tanh(h) #B*T*H
e = self.W_out(h) # b t 1
e = torch.reshape(e, (batch_size, time_step))# b t
elif self.attention_type == 'mul':
q = torch.reshape(input_q, (batch_size, self.attention_hidden_dim, 1)) #B*h 1
e = torch.matmul(input_k, q).squeeze()#b t
elif self.attention_type == 'concat':
q = input_q.unsqueeze(1).repeat(1,time_step,1)# b t h
k = input_k
c = torch.cat((q, k), dim=-1) #B*T*2I
h = torch.matmul(c, self.Wh)
h = self.tanh(h)
e = torch.matmul(h, self.Wa) + self.ba #B*T*1
e = torch.reshape(e, (batch_size, time_step)) # b t
a = self.softmax(e) #B*T
if self.dropout is not None:
a = self.dropout(a)
v = torch.matmul(a.unsqueeze(1), input_v).squeeze() #B*I
return v, a
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
# def tile(a, dim, n_tile):
# init_dim = a.size(dim)
# repeat_idx = [1] * a.dim()
# repeat_idx[dim] = n_tile
# a = a.repeat(*(repeat_idx))
# order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])).to(self.device)
# return torch.index_select(a, dim, order_index).to(self.device)
class PositionwiseFeedForward(nn.Module): # new added
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x)))), None
class PositionalEncoding(nn.Module): # new added / not use anymore
"Implement the PE function."
def __init__(self, d_model, dropout, max_len=400):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + torch.autograd.Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0 # 下三角矩阵
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)# b h t d_k
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k) # b h t t
if mask is not None:# 1 1 t t
scores = scores.masked_fill(mask == 0, -1e9)# b h t t 下三角
p_attn = F.softmax(scores, dim = -1)# b h t t
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn # b h t v (d_k)
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, self.d_k * self.h), 3)
self.final_linear = nn.Linear(d_model, d_model)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1) # 1 1 t t
nbatches = query.size(0)# b
input_dim = query.size(1)# i+1
feature_dim = query.size(-1)# i+1
#input size -> # batch_size * d_input * hidden_dim
# d_model => h * d_k
query, key, value = \
[l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))] # b num_head d_input d_k
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)# b num_head d_input d_v (d_k)
x = x.transpose(1, 2).contiguous() \
.view(nbatches, -1, self.h * self.d_k)# batch_size * d_input * hidden_dim
#DeCov
DeCov_contexts = x.transpose(0, 1).transpose(1, 2) # I+1 H B
# print(DeCov_contexts.shape)
Covs = cov(DeCov_contexts[0,:,:])
DeCov_loss = 0.5 * (torch.norm(Covs, p = 'fro')**2 - torch.norm(torch.diag(Covs))**2 )
for i in range(17+1 -1):
Covs = cov(DeCov_contexts[i+1,:,:])
DeCov_loss += 0.5 * (torch.norm(Covs, p = 'fro')**2 - torch.norm(torch.diag(Covs))**2 )
return self.final_linear(x), DeCov_loss
class LayerNorm(nn.Module):
def __init__(self, size, eps=1e-7):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(size))
self.b_2 = nn.Parameter(torch.zeros(size))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
def cov(m, y=None):
if y is not None:
m = torch.cat((m, y), dim=0)
m_exp = torch.mean(m, dim=1)
x = m - m_exp[:, None]
cov = 1 / (x.size(1) - 1) * x.mm(x.t())
return cov
class SublayerConnection(nn.Module):
"""
A residual connection followed by a layer norm.
Note for code simplicity the norm is first as opposed to last.
"""
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
"Apply residual connection to any sublayer with the same size."
returned_value = sublayer(self.norm(x))
return x + self.dropout(returned_value[0]) , returned_value[1]
class AICare(nn.Module):
def __init__(self, lab_dim=17, demo_dim=4, hidden_dim=32, d_model=32, MHD_num_head=4, d_ff=64, device='cuda', keep_prob=0.5, **kwargs):
super(AICare, self).__init__()
# hyperparameters
self.lab_dim = lab_dim
self.hidden_dim = hidden_dim # d_model
self.d_model = d_model
self.MHD_num_head = MHD_num_head
self.device = device
self.d_ff = d_ff
self.keep_prob = keep_prob
# layers
self.PositionalEncoding = PositionalEncoding(self.d_model, dropout = 0, max_len = 400)
# self.GRUs = clones(nn.GRU(1, self.hidden_dim, batch_first = True), self.lab_dim)
self.GRUs = clones(nn.RNN(1, self.hidden_dim, bidirectional = True, batch_first = True), self.lab_dim)
self.LastStepAttentions = clones(SingleAttention(self.hidden_dim, 8, attention_type='concat', demographic_dim=12, time_aware=True, use_demographic=False),self.lab_dim)
self.FinalAttentionQKV = FinalAttentionQKV(self.hidden_dim, self.hidden_dim, attention_type='mul',dropout = 1 - self.keep_prob)
self.MultiHeadedAttention = MultiHeadedAttention(self.MHD_num_head, self.d_model,dropout = 1 - self.keep_prob)
self.SublayerConnection = SublayerConnection(self.d_model, dropout = 1 - self.keep_prob)
self.PositionwiseFeedForward = PositionwiseFeedForward(self.d_model, self.d_ff, dropout=0.1)
self.demo_proj_main = nn.Linear(demo_dim, self.hidden_dim)
self.demo_proj = nn.Linear(demo_dim, self.hidden_dim)
self.output_proj = nn.Linear(self.hidden_dim*2, self.hidden_dim)
self.dropout = nn.Dropout(p = 1 - self.keep_prob)
self.tanh=nn.Tanh()
self.softmax = nn.Softmax()
self.sigmoid = nn.Sigmoid()
self.relu=nn.ReLU()
def forward(self, input, demo_input, mask, **kwargs):
# input shape [batch_size, timestep, feature_dim]
demo_main = self.tanh(self.demo_proj_main(demo_input)).unsqueeze(1)# b hidden_dim
batch_size = input.size(0)
time_step = input.size(1)
feature_dim = input.size(2)
assert(feature_dim == self.lab_dim)# input Tensor : 256 * 48 * 76
assert(self.d_model % self.MHD_num_head == 0)
lens = mask.sum(dim=1)
GRU_embeded_input = torch.sum(self.GRUs[0](pack_padded_sequence(input[:,:,0].unsqueeze(-1), lens.cpu(), batch_first=True, enforce_sorted=False))[1], 0).squeeze().unsqueeze(1) # b 1 h
# print(GRU_embeded_input.shape)
for i in range(feature_dim-1):
embeded_input = torch.sum(self.GRUs[i+1](pack_padded_sequence(input[:,:,i+1].unsqueeze(-1), lens.cpu(), batch_first=True, enforce_sorted=False))[1], 0).squeeze().unsqueeze(1) # b 1 h
GRU_embeded_input = torch.cat((GRU_embeded_input, embeded_input), 1)
# print(demo_main.shape)
GRU_embeded_input = torch.cat((GRU_embeded_input, demo_main), 1)# b i+1 h
posi_input = self.dropout(GRU_embeded_input) # batch_size * d_input * hidden_dim
weighted_contexts = self.FinalAttentionQKV(posi_input)[0]
combined_hidden = torch.cat((weighted_contexts, \
demo_main.squeeze(1)),-1)#b n h
out = self.output_proj(combined_hidden)
# out = self.dropout(out)
# output = self.output(self.dropout(combined_hidden))# b 1
# output = self.sigmoid(output)
# return output
return out