Switch to side-by-side view

--- a
+++ b/AICare-baselines/dl_tune2.py
@@ -0,0 +1,60 @@
+import hydra
+import lightning as L
+from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
+from lightning.pytorch.loggers import CSVLogger, WandbLogger
+from omegaconf import DictConfig, OmegaConf
+
+import wandb
+from datasets.loader.datamodule import EhrDataModule
+from datasets.loader.load_los_info import get_los_info
+from pipelines import DlPipeline
+
+# import os
+# os.environ['WANDB_MODE'] = 'offline'
+# os.environ['WANDB_LOG_LEVEL'] = 'debug'
+
+project_name = "aicare"
+
+hydra.initialize(config_path="configs", version_base=None)
+cfg = OmegaConf.to_container(hydra.compose(config_name="config"))
+
+dataset_config = {
+    'tjh': {'demo_dim': 2, 'lab_dim': 73},
+    'cdsl': {'demo_dim': 2, 'lab_dim': 97},
+    'mimic-iii': {'demo_dim': 2, 'lab_dim': 59},
+    'mimic-iv': {'demo_dim': 2, 'lab_dim': 59},
+}
+
+
+sweep_id = "nal5p411"
+
+def run_experiment():
+    run = wandb.init(project=project_name, config=cfg)
+    wandb_logger = WandbLogger(project=project_name, log_model=True) # log only the last (best) checkpoint
+    config = wandb.config
+    config.update(dataset_config[config['dataset']], allow_val_change=True)
+    los_config = get_los_info(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}')
+    main_metric = "mae" if config["task"] == "los" else "auprc"
+    config.update({"los_info": los_config, "main_metric": main_metric})
+    
+    # data
+    dm = EhrDataModule(f'datasets/{config["dataset"]}/processed/fold_{config["fold"]}', batch_size=config["batch_size"])
+
+    # EarlyStop and checkpoint callback
+    if config["task"] in ["outcome", "multitask"]:
+        early_stopping_callback = EarlyStopping(monitor="auprc", patience=config["patience"], mode="max",)
+        checkpoint_callback = ModelCheckpoint(monitor="auprc", mode="max")
+    elif config["task"] == "los":
+        early_stopping_callback = EarlyStopping(monitor="mae", patience=config["patience"], mode="min",)
+        checkpoint_callback = ModelCheckpoint(monitor="mae", mode="min")
+
+    L.seed_everything(config["seed"]) # seed for reproducibility
+
+    # train/val/test
+    pipeline = DlPipeline(config.as_dict())
+    trainer = L.Trainer(accelerator="gpu", devices=[1], max_epochs=config["epochs"], logger=wandb_logger, callbacks=[early_stopping_callback, checkpoint_callback], num_sanity_val_steps=0)
+    trainer.fit(pipeline, dm)
+    print("Best Score", checkpoint_callback.best_model_score)
+
+if __name__ == "__main__":
+   wandb.agent(sweep_id, function=run_experiment, project=project_name)