import pandas as pd
import numpy as np
import math
import copy
def calculate_data_existing_length(data):
res = 0
for i in data:
if not pd.isna(i):
res += 1
return res
# elements in data are sorted in time ascending order
def fill_missing_value(data, to_fill_value=0):
data_len = len(data)
data_exist_len = calculate_data_existing_length(data)
if data_len == data_exist_len:
return data
elif data_exist_len == 0:
# data = [to_fill_value for _ in range(data_len)]
for i in range(data_len):
data[i] = to_fill_value
return data
if pd.isna(data[0]):
# find the first non-nan value's position
not_na_pos = 0
for i in range(data_len):
if not pd.isna(data[i]):
not_na_pos = i
break
# fill element before the first non-nan value with median
for i in range(not_na_pos):
data[i] = to_fill_value
# fill element after the first non-nan value
for i in range(1, data_len):
if pd.isna(data[i]):
data[i] = data[i - 1]
return data
def forward_fill_pipeline(
df: pd.DataFrame,
default_fill: pd.DataFrame,
demographic_features: list[str],
labtest_features: list[str],
):
grouped = df.groupby("PatientID")
all_x = []
all_y = []
all_pid = []
for name, group in grouped:
sorted_group = group.sort_values(by=["RecordTime"], ascending=True)
patient_x = []
patient_y = []
for f in ["Age"] + labtest_features:
to_fill_value = default_fill[f]
# take median patient as the default to-fill missing value
fill_missing_value(sorted_group[f].values, to_fill_value)
for _, v in sorted_group.iterrows():
patient_y.append([v["Outcome"], v["LOS"]])
x = []
for f in demographic_features + labtest_features:
x.append(v[f])
patient_x.append(x)
all_x.append(patient_x)
all_y.append(patient_y)
all_pid.append(name)
return all_x, all_y, all_pid
# outlier processing
def filter_outlier(element):
if pd.isna(element):
return 0
elif np.abs(float(element)) > 1e4:
return 0
else:
return element
def normalize_dataframe(train_df, val_df, test_df, normalize_features):
# Calculate the quantiles
q_low = train_df[normalize_features].quantile(0.05)
q_high = train_df[normalize_features].quantile(0.95)
# Filter the DataFrame based on the quantiles
filtered_df = train_df[(train_df[normalize_features] > q_low) & (
train_df[normalize_features] < q_high)]
# Calculate the mean and standard deviation and median of the filtered data, also the default fill value
train_mean = filtered_df[normalize_features].mean()
train_std = filtered_df[normalize_features].std()
train_median = filtered_df[normalize_features].median()
default_fill: pd.DataFrame = (train_median-train_mean)/(train_std+1e-12)
# LOS info
los_info = {"los_mean": train_mean["LOS"].item(
), "los_std": train_std["LOS"].item(), "los_median": train_median["LOS"].item()}
# Calculate large los and threshold (optional, designed for covid-19 benchmark)
los_array = train_df.groupby('PatientID')['LOS'].max().values
los_p95 = np.percentile(los_array, 95)
los_p5 = np.percentile(los_array, 5)
filtered_los = los_array[(los_array >= los_p5) & (los_array <= los_p95)]
los_info.update({"large_los": los_p95.item(), "threshold": filtered_los.mean().item()*0.5})
# Z-score normalize the train, val, and test sets with train_mean and train_std
train_df[normalize_features] = (train_df[normalize_features] - train_mean) / (train_std+1e-12)
val_df[normalize_features] = (val_df[normalize_features] - train_mean) / (train_std+1e-12)
test_df[normalize_features] = (test_df[normalize_features] - train_mean) / (train_std+1e-12)
train_df.loc[:, normalize_features] = train_df.loc[:, normalize_features].applymap(filter_outlier)
val_df.loc[:, normalize_features] = val_df.loc[:, normalize_features].applymap(filter_outlier)
test_df.loc[:, normalize_features] = test_df.loc[:, normalize_features].applymap(filter_outlier)
return train_df, val_df, test_df, default_fill, los_info, train_mean, train_std
def normalize_df_with_statistics(df, normalize_features, train_mean, train_std):
df[normalize_features] = (df[normalize_features] - train_mean) / (train_std+1e-12)
df.loc[:, normalize_features] = df.loc[:, normalize_features].applymap(filter_outlier)
return df