a b/AICare-baselines/configs/exp.py
1
hparams = [
2
    {
3
        "model": "CatBoost",
4
        "dataset": "mimic-iv",
5
        "task": "outcome",
6
        "max_depth": 5,
7
        "n_estimators": 50,
8
        "learning_rate": 0.1,
9
        "batch_size": 81920,
10
        "main_metric": "auprc",
11
    },
12
    {
13
        "model": "XGBoost",
14
        "dataset": "mimic-iv",
15
        "task": "outcome",
16
        "max_depth": 5,
17
        "n_estimators": 50,
18
        "learning_rate": 0.1,
19
        "batch_size": 81920,
20
        "main_metric": "auprc",
21
    },
22
    {
23
        'model': 'GRU',
24
        'dataset': 'mimic-iv',
25
        'task': 'outcome',
26
        'epochs': 50,
27
        'patience': 10,
28
        'batch_size': 1024,
29
        'learning_rate': 0.001,
30
        'main_metric': 'auprc',
31
        'demo_dim': 2,
32
        'lab_dim': 59,
33
        'hidden_dim': 128,
34
        'output_dim': 1
35
    },
36
    {
37
        'model': 'AdaCare',
38
        'dataset': 'mimic-iv',
39
        'task': 'outcome',
40
        'epochs': 50,
41
        'patience': 10,
42
        'batch_size': 1024,
43
        'learning_rate': 0.001,
44
        'main_metric': 'auprc',
45
        'demo_dim': 2,
46
        'lab_dim': 59,
47
        'hidden_dim': 128,
48
        'output_dim': 1
49
    },
50
    {
51
        "model": "CatBoost",
52
        "dataset": "tjh",
53
        "task": "outcome",
54
        "max_depth": 5,
55
        "n_estimators": 50,
56
        "learning_rate": 0.1,
57
        "batch_size": 81920,
58
        "main_metric": "auprc",
59
    },
60
    {
61
        "model": "XGBoost",
62
        "dataset": "tjh",
63
        "task": "outcome",
64
        "max_depth": 5,
65
        "n_estimators": 50,
66
        "learning_rate": 0.1,
67
        "batch_size": 81920,
68
        "main_metric": "auprc",
69
    },
70
    {
71
        'model': 'GRU',
72
        'dataset': 'tjh',
73
        'task': 'outcome',
74
        'epochs': 50,
75
        'patience': 10,
76
        'batch_size': 1024,
77
        'learning_rate': 0.001,
78
        'main_metric': 'auprc',
79
        'demo_dim': 2,
80
        'lab_dim': 73,
81
        'hidden_dim': 128,
82
        'output_dim': 1
83
    },
84
    {
85
        'model': 'AdaCare',
86
        'dataset': 'tjh',
87
        'task': 'outcome',
88
        'epochs': 50,
89
        'patience': 10,
90
        'batch_size': 1024,
91
        'learning_rate': 0.001,
92
        'main_metric': 'auprc',
93
        'demo_dim': 2,
94
        'lab_dim': 73,
95
        'hidden_dim': 128,
96
        'output_dim': 1
97
    },
98
    {
99
        "model": "GBDT",
100
        "dataset": "mimic-iv",
101
        "task": "outcome",
102
        "max_depth": 5,
103
        "n_estimators": 100,
104
        "learning_rate": 0.1,
105
        "batch_size": 81920,
106
        "main_metric": "auprc",
107
    },
108
    {
109
        "model": "GBDT",
110
        "dataset": "tjh",
111
        "task": "outcome",
112
        "max_depth": 5,
113
        "n_estimators": 100,
114
        "learning_rate": 0.1,
115
        "batch_size": 81920,
116
        "main_metric": "auprc",
117
    },
118
    {
119
        "model": "RF",
120
        "dataset": "mimic-iv",
121
        "task": "outcome",
122
        "max_depth": 15,
123
        "n_estimators": 100,
124
        "learning_rate": 1.0,
125
        "batch_size": 81920,
126
        "main_metric": "auprc",
127
    },
128
    {
129
        "model": "RF",
130
        "dataset": "tjh",
131
        "task": "outcome",
132
        "max_depth": 15,
133
        "n_estimators": 100,
134
        "learning_rate": 1.0,
135
        "batch_size": 81920,
136
        "main_metric": "auprc",
137
    },
138
    {
139
        'model': 'StageNet',
140
        'dataset': 'mimic-iv',
141
        'task': 'outcome',
142
        'epochs': 50,
143
        'patience': 10,
144
        'batch_size': 1024,
145
        'learning_rate': 0.001,
146
        'main_metric': 'auprc',
147
        'demo_dim': 2,
148
        'lab_dim': 59,
149
        'hidden_dim': 128,
150
        'output_dim': 1
151
    },
152
    {
153
        'model': 'StageNet',
154
        'dataset': 'tjh',
155
        'task': 'outcome',
156
        'epochs': 50,
157
        'patience': 10,
158
        'batch_size': 1024,
159
        'learning_rate': 0.001,
160
        'main_metric': 'auprc',
161
        'demo_dim': 2,
162
        'lab_dim': 73,
163
        'hidden_dim': 128,
164
        'output_dim': 1
165
    },
166
    {
167
        'model': 'TCN',
168
        'dataset': 'mimic-iv',
169
        'task': 'outcome',
170
        'epochs': 50,
171
        'patience': 10,
172
        'batch_size': 1024,
173
        'learning_rate': 0.001,
174
        'main_metric': 'auprc',
175
        'demo_dim': 2,
176
        'lab_dim': 59,
177
        'hidden_dim': 128,
178
        'output_dim': 1
179
    },
180
    {
181
        'model': 'TCN',
182
        'dataset': 'tjh',
183
        'task': 'outcome',
184
        'epochs': 50,
185
        'patience': 10,
186
        'batch_size': 1024,
187
        'learning_rate': 0.001,
188
        'main_metric': 'auprc',
189
        'demo_dim': 2,
190
        'lab_dim': 73,
191
        'hidden_dim': 128,
192
        'output_dim': 1
193
    },
194
    {
195
        'model': 'AICare',
196
        'dataset': 'mimic-iv',
197
        'task': 'outcome',
198
        'epochs': 50,
199
        'patience': 10,
200
        'batch_size': 1024,
201
        'learning_rate': 0.001,
202
        'main_metric': 'auprc',
203
        'demo_dim': 2,
204
        'lab_dim': 59,
205
        'hidden_dim': 128,
206
        'output_dim': 1
207
    },
208
    {
209
        'model': 'AICare',
210
        'dataset': 'tjh',
211
        'task': 'outcome',
212
        'epochs': 50,
213
        'patience': 10,
214
        'batch_size': 1024,
215
        'learning_rate': 0.001,
216
        'main_metric': 'auprc',
217
        'demo_dim': 2,
218
        'lab_dim': 73,
219
        'hidden_dim': 128,
220
        'output_dim': 1
221
    },
222
    {
223
        'model': 'RETAIN',
224
        'dataset': 'mimic-iv',
225
        'task': 'outcome',
226
        'epochs': 50,
227
        'patience': 10,
228
        'batch_size': 1024,
229
        'learning_rate': 0.001,
230
        'main_metric': 'auprc',
231
        'demo_dim': 2,
232
        'lab_dim': 59,
233
        'hidden_dim': 128,
234
        'output_dim': 1
235
    },
236
    {
237
        'model': 'RETAIN',
238
        'dataset': 'tjh',
239
        'task': 'outcome',
240
        'epochs': 50,
241
        'patience': 10,
242
        'batch_size': 1024,
243
        'learning_rate': 0.001,
244
        'main_metric': 'auprc',
245
        'demo_dim': 2,
246
        'lab_dim': 73,
247
        'hidden_dim': 128,
248
        'output_dim': 1
249
    },
250
    {
251
        "model": "DT",
252
        "dataset": "mimic-iv",
253
        "task": "outcome",
254
        "max_depth": 5,
255
        "n_estimators": 10,
256
        "learning_rate": 0.01,
257
        "batch_size": 81920,
258
        "main_metric": "auprc",
259
    },
260
    {
261
        "model": "DT",
262
        "dataset": "tjh",
263
        "task": "outcome",
264
        "max_depth": 5,
265
        "n_estimators": 10,
266
        "learning_rate": 0.01,
267
        "batch_size": 81920,
268
        "main_metric": "auprc",
269
    },
270
271
]