[780764]: / src / eval / query_gpt4.ipynb

Download this file

471 lines (470 with data), 12.7 kB

{
 "cells": [
  {
   "cell_type": "code",
   "id": "afdeba94",
   "metadata": {},
   "source": [
    "import os\n",
    "import sys\n",
    "\n",
    "src_path = os.path.abspath(\"../..\")\n",
    "print(src_path)\n",
    "sys.path.append(src_path)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "0d5f2e19",
   "metadata": {},
   "source": "from src.utils import create_directory, raw_data_path, processed_data_path, set_seed, remote_project_path",
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "e00815d2",
   "metadata": {},
   "source": [
    "set_seed(seed=42)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "fd92d900",
   "metadata": {},
   "source": [
    "import pandas as pd"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "metadata": {},
   "cell_type": "code",
   "source": "model_path = os.path.join(remote_project_path, \"output\")",
   "id": "4e04fa3e4c08145",
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "ef32981d",
   "metadata": {},
   "source": "output_path = os.path.join(processed_data_path, \"mimic4\")",
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "539a6392",
   "metadata": {},
   "source": [
    "cohort = pd.read_csv(os.path.join(output_path, \"cohort_test_subset.csv\"))\n",
    "print(cohort.shape)\n",
    "cohort.head()"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "6659ecf8",
   "metadata": {},
   "source": [
    "hadm_ids = set(cohort.hadm_id.unique().tolist())\n",
    "len(hadm_ids)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "4090a70d",
   "metadata": {},
   "source": [
    "qa = pd.read_csv(os.path.join(output_path, \"qa_test_subset.csv\"))\n",
    "qa[\"source\"] = qa.event_type.apply(lambda x: \"note\" if pd.isna(x) else \"event\")\n",
    "qa"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "dc67f44e",
   "metadata": {},
   "source": [
    "def get_events(hadm_id):\n",
    "    df = pd.read_csv(os.path.join(output_path, f\"event_selected/event_{hadm_id}.csv\"))  \n",
    "    text = []\n",
    "    for i, row in df.iterrows():\n",
    "        text.append(f\"{row.timestamp:.2f} hour, {row.event_type}, {row.event_value}\")\n",
    "    return \"\\n\".join(text)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "1f080932",
   "metadata": {},
   "source": [
    "print(get_events(qa.iloc[2].hadm_id))"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "53830063",
   "metadata": {},
   "source": [
    "system_content = \"\"\"You are an AI assistant specialized in analyzing ICU patient data.\n",
    "You are given a sequence of clinical events from an ICU patient's hospital admission.\n",
    "Each event is formatted as follows: {time elapsed after admission (in hours)}, {event type}, {event value}.\n",
    "Based on this sequence of events, provide a concise and accurate answer to the question below.\n",
    "Keep your response within 256 tokens.\"\"\""
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "3fd4ea61",
   "metadata": {},
   "source": [
    "messages = [{\"role\": \"system\", \"content\": system_content},\n",
    "            {\"role\": \"user\", \"content\": f\"{qa.iloc[0].q}\\n\\n\" + get_events(qa.iloc[0].hadm_id)}]"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "dfd9801f",
   "metadata": {},
   "source": [
    "print(messages[0][\"content\"])"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "248cd830",
   "metadata": {},
   "source": [
    "print(messages[1][\"content\"])"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "f064720f",
   "metadata": {},
   "source": [
    "prompts = {}\n",
    "for _, data in qa.iterrows():\n",
    "    messages = [{\"role\": \"system\", \"content\": system_content},\n",
    "                {\"role\": \"user\", \"content\": f\"{data.q}\\n\\n\" + get_events(data.hadm_id)}]\n",
    "    prompts[(data.source, data.hadm_id)] = messages\n",
    "len(prompts)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "3c1734d5",
   "metadata": {},
   "source": [
    "prompts[(\"note\", qa.iloc[0].hadm_id)]"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "52c4c16f",
   "metadata": {},
   "source": [
    "import tiktoken\n",
    "\n",
    "\n",
    "def num_tokens_from_message(message):\n",
    "    encoding = tiktoken.encoding_for_model(\"gpt-4\")\n",
    "    return len(encoding.encode(message[0][\"content\"])) + len(encoding.encode(message[1][\"content\"])) + 11    "
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "e90c113b",
   "metadata": {},
   "source": [
    "num_tokens_from_message(messages)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "b42067ab",
   "metadata": {},
   "source": [
    "prompts_num_tokens = {}\n",
    "for k, v in prompts.items():\n",
    "    prompts_num_tokens[k] = num_tokens_from_message(v)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "d80f78b7",
   "metadata": {},
   "source": [
    "import numpy as np\n",
    "\n",
    "\n",
    "print(\"mean: \", np.mean(list(prompts_num_tokens.values())))\n",
    "print(\"std: \", np.std(list(prompts_num_tokens.values())))\n",
    "print(\"min: \", np.min(list(prompts_num_tokens.values())))\n",
    "print(\"max: \", np.max(list(prompts_num_tokens.values())))\n",
    "print(\"25th Quantile: \", np.percentile(list(prompts_num_tokens.values()), 25))\n",
    "print(\"50th Quantile: \", np.percentile(list(prompts_num_tokens.values()), 50))\n",
    "print(\"75th Quantile: \", np.percentile(list(prompts_num_tokens.values()), 75))"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "40ea7c46",
   "metadata": {},
   "source": [
    "max_response_tokens = 256\n",
    "token_limit = 128000"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "b99ad70e",
   "metadata": {},
   "source": [
    "import copy\n",
    "\n",
    "\n",
    "def trim_message(message):\n",
    "    trimmed_message = copy.deepcopy(message)\n",
    "    encoding = tiktoken.encoding_for_model(\"gpt-4\")\n",
    "    system_tokens = len(encoding.encode(message[0][\"content\"]))\n",
    "    user_tokens = len(encoding.encode(message[1][\"content\"]))\n",
    "    \n",
    "    # If the total tokens are within the limit, no trimming is needed\n",
    "    if system_tokens + user_tokens + 11 + max_response_tokens <= token_limit:\n",
    "        return trimmed_message\n",
    "    \n",
    "    # Otherwise, trim the user message content\n",
    "    available_tokens = token_limit - system_tokens - 11 - max_response_tokens\n",
    "    trimmed_user_content = encoding.decode(encoding.encode(message[1][\"content\"])[:available_tokens])\n",
    "    \n",
    "    # Update the message with the trimmed content\n",
    "    trimmed_message[1][\"content\"] = trimmed_user_content\n",
    "    return trimmed_message"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "c836f4cf",
   "metadata": {},
   "source": [
    "trimmed_prompts = {}\n",
    "for k, v in prompts.items():\n",
    "    trimmed_v = trim_message(v)\n",
    "    if trimmed_v != v:\n",
    "        print(f\"{k} is trimmed\")\n",
    "    trimmed_prompts[k] = trim_message(v)\n",
    "len(trimmed_prompts)"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "59cf2588",
   "metadata": {},
   "source": [
    "import asyncio\n",
    "from openai import AsyncAzureOpenAI\n",
    "\n",
    "\n",
    "# TODO: Enter your credentials\n",
    "async_client = AsyncAzureOpenAI(\n",
    "    azure_endpoint=\"\",\n",
    "    api_key=\"\",\n",
    "    api_version=\"\"\n",
    ")"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "6d3b1c82",
   "metadata": {},
   "source": [
    "async def generate_chat_response(async_client, prompt):\n",
    "    chat_params = {\n",
    "        \"model\": \"gpt-4\",\n",
    "        \"messages\": prompt,\n",
    "        \"max_tokens\": max_response_tokens,\n",
    "        \"temperature\": 0.0,\n",
    "    }\n",
    "    try:\n",
    "        response = await async_client.chat.completions.create(**chat_params)\n",
    "    except Exception as e:\n",
    "        print(f\"Error in call_async: {e}\")\n",
    "        time.sleep(10)\n",
    "        print(f\"Sleep for 10s...\")\n",
    "        return -1\n",
    "    return response.choices[0].message.content"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "b4ebea20",
   "metadata": {},
   "source": [
    "import time\n",
    "\n",
    "\n",
    "async def process_prompts(prompts):\n",
    "    # Gather all the futures together and wait for them to complete\n",
    "    responses = await asyncio.gather(*(generate_chat_response(async_client, prompt) for prompt in prompts))        \n",
    "    return responses"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "aae93763",
   "metadata": {},
   "source": [
    "def chunk_list(lst, chunk_size):\n",
    "    \"\"\"Yield successive chunk_size chunks from lst.\"\"\"\n",
    "    for i in range(0, len(lst), chunk_size):\n",
    "        yield lst[i:i + chunk_size]"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "d4ff8a13",
   "metadata": {},
   "source": [
    "from tqdm.asyncio import tqdm\n",
    "\n",
    "\n",
    "async def process_prompts_in_batches(prompts, batch_size, repeat=3):\n",
    "    all_responses = {}\n",
    "    \n",
    "    for i in range(repeat):\n",
    "        \n",
    "        print(f\"round {i}\")\n",
    "        prev_n_responses = len(all_responses)\n",
    "        \n",
    "        prompts_k = [k for k in prompts.keys() if k not in all_responses]\n",
    "\n",
    "        # Chunk the prompts into batches\n",
    "        prompt_k_batches = list(chunk_list(prompts_k, batch_size))\n",
    "\n",
    "        for batch_k in tqdm(prompt_k_batches, desc=\"Processing Batches\"):\n",
    "            batch_v = [prompts[k] for k in batch_k]\n",
    "            responses = await process_prompts(batch_v)\n",
    "            all_responses |= {k: v for k, v in zip(batch_k, responses) if type(v) is str}\n",
    "        print(f\"get {len(all_responses) - prev_n_responses} new responses\")\n",
    "    \n",
    "    return all_responses"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "dfac8357",
   "metadata": {},
   "source": [
    "# Choose an appropriate batch size\n",
    "batch_size = 10  # Adjust based on your system and API limits\n",
    "\n",
    "# Assuming we are in an async environment\n",
    "responses = await process_prompts_in_batches(trimmed_prompts, batch_size)\n",
    "print(f\"Processed {len(responses)} responses\")"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "7e65eb22",
   "metadata": {},
   "source": [
    "import json\n",
    "\n",
    "\n",
    "with open(os.path.join(model_path, \"gpt4/qa_output/answer.jsonl\"), \"w\") as file:\n",
    "    for _, data in qa.iterrows():\n",
    "        a_hat = responses.get((data.source, data.hadm_id), \"\")\n",
    "        json_string = json.dumps({\"hadm_id\": data.hadm_id, \"q\": data.q, \"a\": data.a, \"a_hat\": a_hat, \"source\": data.source})\n",
    "        file.write(json_string + '\\n')"
   ],
   "outputs": [],
   "execution_count": null
  },
  {
   "cell_type": "code",
   "id": "e4424b6a",
   "metadata": {},
   "source": [],
   "outputs": [],
   "execution_count": null
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llm",
   "language": "python",
   "name": "llm"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.19"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}