[780764]: / src / dataset / collator.py

Download this file

194 lines (169 with data), 7.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import logging
import warnings
from typing import Dict, List
import torch
from transformers import PreTrainedTokenizer
class InstructionTuningCollator:
def __init__(
self,
tokenizer: PreTrainedTokenizer,
sys_prompt: str = "You are an AI assistant specialized in analyzing ICU patient data.",
ignore_index: int = -100
) -> None:
self.tokenizer = tokenizer
self.sys_prompt = sys_prompt
self.ignore_index = ignore_index
self.response_template, self.response_token_ids = self.infer_response_template()
def infer_response_template(self):
logging.warning("Infer response template with v2")
response_template, response_token_ids = self.infer_response_template_v2()
if response_template == "":
logging.warning("Infer response template with v1")
response_template, response_token_ids = self.infer_response_template_v1()
return response_template, response_token_ids
def infer_response_template_v1(self) -> (str, List[int]):
token = "Hi?"
chat = [
{"role": "user", "content": token},
]
formatted_chat = self.tokenizer.apply_chat_template(
chat,
tokenize=False,
add_generation_prompt=True
)
response_template = formatted_chat[formatted_chat.find(token) + len(token):]
response_token_ids = self.tokenizer.encode(response_template, add_special_tokens=False)
logging.warning(f"Inferred response template: {repr(response_template)}")
logging.warning(f"Inferred response template token ids: {response_token_ids}")
return response_template, response_token_ids
def infer_response_template_v2(self) -> (str, List[int]):
token = "Hi?"
chat = [
{"role": "user", "content": token},
]
formatted_chat_wo_gen = self.tokenizer.apply_chat_template(
chat,
tokenize=False,
add_generation_prompt=False
)
formatted_chat = self.tokenizer.apply_chat_template(
chat,
tokenize=False,
add_generation_prompt=True
)
formatted_chat_wo_gen = self.tokenizer.encode(formatted_chat_wo_gen, add_special_tokens=False)
formatted_chat = self.tokenizer.encode(formatted_chat, add_special_tokens=False)
response_token_ids = formatted_chat[len(formatted_chat_wo_gen):]
response_template = self.tokenizer.decode(response_token_ids)
logging.warning(f"Inferred response template: {repr(response_template)}")
logging.warning(f"Inferred response template token ids: {response_token_ids}")
return response_template, response_token_ids
def apply_chat_template(self, q_text: str, a_text: str):
chat = [
{"role": "system", "content": self.sys_prompt},
{"role": "user", "content": q_text},
{"role": "assistant", "content": a_text}
]
formatted_chat = self.tokenizer.apply_chat_template(
chat,
tokenize=False,
add_generation_prompt=False
)
return formatted_chat
@staticmethod
def pad_tensors(tensor_list, padding_value=0):
max_num_events = max(tensor.shape[0] for tensor in tensor_list)
feature_dim = tensor_list[0].shape[1]
batch_size = len(tensor_list)
padded_tensor = torch.full((batch_size, max_num_events, feature_dim), padding_value, dtype=torch.float)
is_padding = torch.ones((batch_size, max_num_events), dtype=torch.bool)
for i, tensor in enumerate(tensor_list):
num_events = tensor.shape[0]
padded_tensor[i, :num_events, :] = tensor
is_padding[i, :num_events] = 0
return padded_tensor, is_padding
def mask_instruction(self, labels: torch.Tensor) -> torch.Tensor:
for i in range(len(labels)):
response_token_ids_start_idx = None
for idx in torch.where(labels[i] == self.response_token_ids[0])[0]:
if self.response_token_ids == labels[i][idx: idx + len(self.response_token_ids)].tolist():
response_token_ids_start_idx = idx
if response_token_ids_start_idx is None:
warnings.warn(
f"Could not find response key `{self.response_template}` in the "
f'following instance: {self.tokenizer.decode(labels[i])} '
f"This instance will be ignored in loss calculation. "
f"Note, if this happens often, consider increasing the `max_seq_length`."
)
labels[i, :] = self.ignore_index
else:
response_token_ids_end_idx = response_token_ids_start_idx + len(self.response_token_ids)
labels[i, :response_token_ids_end_idx] = self.ignore_index
return labels
def __call__(self, batch: List) -> Dict[str, torch.Tensor]:
all_text = []
all_events = []
for data in batch:
text = self.apply_chat_template(
q_text=data[0],
a_text=data[1],
)
all_text.append(text)
all_events.append(data[2])
inputs = self.tokenizer(
all_text,
return_tensors="pt",
padding=True,
truncation=True,
add_special_tokens=False,
)
input_ids = inputs["input_ids"]
pixel_values, pixel_values_is_padding = self.pad_tensors(all_events)
attention_mask = inputs["attention_mask"]
labels = self.mask_instruction(input_ids.clone())
return {
"input_ids": input_ids,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"labels": labels,
"pixel_values_is_padding": pixel_values_is_padding,
}
if __name__ == "__main__":
from src.dataset.dataset import InstructionTuningDataset
from torch.utils.data import DataLoader
from src.model.init_llemr import init_llemr
# llm_pretrained_model_name_or_path = "Qwen/Qwen2-0.5B-Instruct"
llm_pretrained_model_name_or_path = "lmsys/vicuna-7b-v1.5"
device = "cuda:0"
llemr, tokenizer = init_llemr(llm_pretrained_model_name_or_path, hidden_size=1027)
llemr.to(device)
dataset = InstructionTuningDataset(split="train", source="event")
print(len(dataset))
collator = InstructionTuningCollator(
tokenizer=tokenizer,
)
loader = DataLoader(
dataset,
batch_size=8,
collate_fn=collator,
)
batch = next(iter(loader))
print(batch["input_ids"].shape)
print(batch["pixel_values"].shape)
print(batch["attention_mask"].shape)
print(batch["labels"].shape)
print(batch["pixel_values_is_padding"].shape)
for key, value in batch.items():
batch[key] = value.to(device)
with torch.no_grad():
outputs = llemr(**batch)
print(outputs.loss)
print(outputs.logits.shape)
llemr.train()
for parameters in llemr.language_model.parameters():
parameters.requires_grad = False
outputs = llemr(**batch)
print(outputs.loss)
print(outputs.logits.shape)
outputs.loss.backward()
print("Success")