|
a |
|
b/src/train/train.py |
|
|
1 |
import logging |
|
|
2 |
from dataclasses import dataclass, field |
|
|
3 |
from typing import Optional |
|
|
4 |
|
|
|
5 |
import transformers |
|
|
6 |
from peft import LoraConfig, get_peft_model |
|
|
7 |
from transformers import ( |
|
|
8 |
Trainer, |
|
|
9 |
TrainingArguments, |
|
|
10 |
AutoTokenizer, |
|
|
11 |
PreTrainedTokenizer |
|
|
12 |
) |
|
|
13 |
|
|
|
14 |
from src.dataset.collator import InstructionTuningCollator |
|
|
15 |
from src.dataset.dataset import InstructionTuningDataset |
|
|
16 |
from src.model.init_llemr import init_llemr |
|
|
17 |
from src.model.modeling_llemr import LlemrForConditionalGeneration |
|
|
18 |
from src.model.utils import find_all_linear_names |
|
|
19 |
|
|
|
20 |
logger = logging.getLogger(__name__) |
|
|
21 |
|
|
|
22 |
|
|
|
23 |
@dataclass |
|
|
24 |
class ModelArguments: |
|
|
25 |
name_or_path: Optional[str] = field(default=None) |
|
|
26 |
llm_pretrained_model_name_or_path: Optional[str] = field(default="Qwen/Qwen2-0.5B-Instruct") |
|
|
27 |
train_type: Optional[str] = field( |
|
|
28 |
default="train_both", |
|
|
29 |
metadata={ |
|
|
30 |
"help": """ |
|
|
31 |
1. train_multi_modal_projector |
|
|
32 |
2. train_both |
|
|
33 |
""" |
|
|
34 |
}, |
|
|
35 |
) |
|
|
36 |
use_lora: Optional[bool] = field(default=True) |
|
|
37 |
lora_r: int = 32 |
|
|
38 |
lora_alpha: int = 16 |
|
|
39 |
lora_dropout: float = 0.05 |
|
|
40 |
lora_bias: str = "none" |
|
|
41 |
vision_hidden_size: int = 768 |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
@dataclass |
|
|
45 |
class DataArguments: |
|
|
46 |
source: Optional[str] = field(default="note") |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
def load_model(model_args: ModelArguments): |
|
|
50 |
if model_args.name_or_path is not None: |
|
|
51 |
logging.warning(f"Load model {model_args.name_or_path} from pretrained") |
|
|
52 |
model = LlemrForConditionalGeneration.from_pretrained( |
|
|
53 |
model_args.name_or_path |
|
|
54 |
) |
|
|
55 |
tokenizer = AutoTokenizer.from_pretrained( |
|
|
56 |
model_args.name_or_path, |
|
|
57 |
padding_side="left" |
|
|
58 |
) |
|
|
59 |
else: |
|
|
60 |
logging.warning(f"Init model {model_args.llm_pretrained_model_name_or_path}") |
|
|
61 |
model, tokenizer = init_llemr( |
|
|
62 |
model_args.llm_pretrained_model_name_or_path, model_args.vision_hidden_size |
|
|
63 |
) |
|
|
64 |
|
|
|
65 |
assert model_args.train_type in ["train_multi_modal_projector", "train_both"] |
|
|
66 |
if model_args.train_type == "train_multi_modal_projector": |
|
|
67 |
logging.warning("Train multi_modal_projector") |
|
|
68 |
for param in model.language_model.parameters(): |
|
|
69 |
param.requires_grad = False |
|
|
70 |
else: |
|
|
71 |
logging.warning("Train both") |
|
|
72 |
|
|
|
73 |
if model_args.use_lora: |
|
|
74 |
assert model_args.train_type == "train_both" |
|
|
75 |
logging.warning("Use Lora") |
|
|
76 |
|
|
|
77 |
config = LoraConfig( |
|
|
78 |
r=model_args.lora_r, |
|
|
79 |
lora_alpha=model_args.lora_alpha, |
|
|
80 |
target_modules=find_all_linear_names(model), |
|
|
81 |
lora_dropout=model_args.lora_dropout, |
|
|
82 |
bias=model_args.lora_bias, |
|
|
83 |
task_type="CAUSAL_LM", |
|
|
84 |
modules_to_save=["multi_modal_projector"], |
|
|
85 |
) |
|
|
86 |
model = get_peft_model(model, config) |
|
|
87 |
|
|
|
88 |
else: |
|
|
89 |
logging.warning("Not use Lora") |
|
|
90 |
|
|
|
91 |
return model, tokenizer |
|
|
92 |
|
|
|
93 |
|
|
|
94 |
def load_data(data_args: DataArguments, tokenizer: PreTrainedTokenizer): |
|
|
95 |
train_dataset = InstructionTuningDataset( |
|
|
96 |
split="train", |
|
|
97 |
source=data_args.source, |
|
|
98 |
) |
|
|
99 |
val_dataset = InstructionTuningDataset( |
|
|
100 |
split="val", |
|
|
101 |
source=data_args.source, |
|
|
102 |
) |
|
|
103 |
collator = InstructionTuningCollator( |
|
|
104 |
tokenizer=tokenizer, |
|
|
105 |
) |
|
|
106 |
return train_dataset, val_dataset, collator |
|
|
107 |
|
|
|
108 |
|
|
|
109 |
def train(): |
|
|
110 |
parser = transformers.HfArgumentParser( |
|
|
111 |
(ModelArguments, DataArguments, TrainingArguments) |
|
|
112 |
) |
|
|
113 |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
114 |
model, tokenizer = load_model(model_args) |
|
|
115 |
train_dataset, val_dataset, collator = load_data(data_args, tokenizer) |
|
|
116 |
|
|
|
117 |
trainer = Trainer( |
|
|
118 |
model=model, |
|
|
119 |
args=training_args, |
|
|
120 |
train_dataset=train_dataset, |
|
|
121 |
eval_dataset=val_dataset, |
|
|
122 |
data_collator=collator, |
|
|
123 |
) |
|
|
124 |
|
|
|
125 |
tokenizer.save_pretrained(training_args.output_dir) |
|
|
126 |
trainer.train() |
|
|
127 |
|
|
|
128 |
|
|
|
129 |
if __name__ == "__main__": |
|
|
130 |
train() |