|
a |
|
b/src/preprocess/05_data_split.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"id": "debdace9", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"import os\n", |
|
|
9 |
"import sys\n", |
|
|
10 |
"\n", |
|
|
11 |
"src_path = os.path.abspath(\"../..\")\n", |
|
|
12 |
"print(src_path)\n", |
|
|
13 |
"sys.path.append(src_path)" |
|
|
14 |
], |
|
|
15 |
"outputs": [], |
|
|
16 |
"execution_count": null |
|
|
17 |
}, |
|
|
18 |
{ |
|
|
19 |
"cell_type": "code", |
|
|
20 |
"id": "6bad1e09", |
|
|
21 |
"metadata": {}, |
|
|
22 |
"source": [ |
|
|
23 |
"from src.utils import create_directory, raw_data_path, processed_data_path, set_seed" |
|
|
24 |
], |
|
|
25 |
"outputs": [], |
|
|
26 |
"execution_count": null |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "code", |
|
|
30 |
"id": "5d9bc78c", |
|
|
31 |
"metadata": {}, |
|
|
32 |
"source": [ |
|
|
33 |
"set_seed(seed=42)" |
|
|
34 |
], |
|
|
35 |
"outputs": [], |
|
|
36 |
"execution_count": null |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"id": "13d22a57", |
|
|
41 |
"metadata": {}, |
|
|
42 |
"source": [ |
|
|
43 |
"import pandas as pd" |
|
|
44 |
], |
|
|
45 |
"outputs": [], |
|
|
46 |
"execution_count": null |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
"cell_type": "code", |
|
|
50 |
"id": "dd9852d5", |
|
|
51 |
"metadata": {}, |
|
|
52 |
"source": [ |
|
|
53 |
"mimic_iv_path = os.path.join(raw_data_path, \"physionet.org/files/mimiciv/2.2\")\n", |
|
|
54 |
"output_path = os.path.join(processed_data_path, \"mimic4\")" |
|
|
55 |
], |
|
|
56 |
"outputs": [], |
|
|
57 |
"execution_count": null |
|
|
58 |
}, |
|
|
59 |
{ |
|
|
60 |
"cell_type": "code", |
|
|
61 |
"id": "b6a27998", |
|
|
62 |
"metadata": {}, |
|
|
63 |
"source": [ |
|
|
64 |
"cohort = pd.read_csv(os.path.join(output_path, \"cohort+len.csv\"))\n", |
|
|
65 |
"print(cohort.shape)\n", |
|
|
66 |
"cohort.head()" |
|
|
67 |
], |
|
|
68 |
"outputs": [], |
|
|
69 |
"execution_count": null |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"id": "9dd92e23", |
|
|
74 |
"metadata": {}, |
|
|
75 |
"source": [ |
|
|
76 |
"cohort[\"hadm_intime\"] = pd.to_datetime(cohort[\"hadm_intime\"])\n", |
|
|
77 |
"cohort[\"hadm_outtime\"] = pd.to_datetime(cohort[\"hadm_outtime\"])\n", |
|
|
78 |
"cohort[\"stay_intime\"] = pd.to_datetime(cohort[\"stay_intime\"])\n", |
|
|
79 |
"cohort[\"stay_outtime\"] = pd.to_datetime(cohort[\"stay_outtime\"])" |
|
|
80 |
], |
|
|
81 |
"outputs": [], |
|
|
82 |
"execution_count": null |
|
|
83 |
}, |
|
|
84 |
{ |
|
|
85 |
"cell_type": "code", |
|
|
86 |
"id": "8f55c793", |
|
|
87 |
"metadata": {}, |
|
|
88 |
"source": [ |
|
|
89 |
"hadm_ids = set(cohort.hadm_id.unique().tolist())\n", |
|
|
90 |
"len(hadm_ids)" |
|
|
91 |
], |
|
|
92 |
"outputs": [], |
|
|
93 |
"execution_count": null |
|
|
94 |
}, |
|
|
95 |
{ |
|
|
96 |
"cell_type": "code", |
|
|
97 |
"id": "26459eda", |
|
|
98 |
"metadata": {}, |
|
|
99 |
"source": [ |
|
|
100 |
"import ast\n", |
|
|
101 |
"import numpy as np\n", |
|
|
102 |
"\n", |
|
|
103 |
"\n", |
|
|
104 |
"def safe_literal_eval(s):\n", |
|
|
105 |
" if pd.isna(s):\n", |
|
|
106 |
" return np.nan\n", |
|
|
107 |
" return ast.literal_eval(s)\n", |
|
|
108 |
"\n", |
|
|
109 |
"\n", |
|
|
110 |
"cohort.label_diagnosis = cohort.label_diagnosis.apply(safe_literal_eval)" |
|
|
111 |
], |
|
|
112 |
"outputs": [], |
|
|
113 |
"execution_count": null |
|
|
114 |
}, |
|
|
115 |
{ |
|
|
116 |
"cell_type": "code", |
|
|
117 |
"id": "99d2b8c8", |
|
|
118 |
"metadata": {}, |
|
|
119 |
"source": [ |
|
|
120 |
"qa_note = pd.read_json(os.path.join(output_path, \"qa_note.jsonl\"), lines = True)\n", |
|
|
121 |
"qa_note" |
|
|
122 |
], |
|
|
123 |
"outputs": [], |
|
|
124 |
"execution_count": null |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"id": "741b6ed7", |
|
|
129 |
"metadata": {}, |
|
|
130 |
"source": [ |
|
|
131 |
"qa_note.hadm_id.nunique()" |
|
|
132 |
], |
|
|
133 |
"outputs": [], |
|
|
134 |
"execution_count": null |
|
|
135 |
}, |
|
|
136 |
{ |
|
|
137 |
"cell_type": "code", |
|
|
138 |
"id": "7d287db0", |
|
|
139 |
"metadata": {}, |
|
|
140 |
"source": [ |
|
|
141 |
"qa_event = pd.read_json(os.path.join(output_path, \"qa_event.jsonl\"), lines = True)\n", |
|
|
142 |
"qa_event" |
|
|
143 |
], |
|
|
144 |
"outputs": [], |
|
|
145 |
"execution_count": null |
|
|
146 |
}, |
|
|
147 |
{ |
|
|
148 |
"cell_type": "code", |
|
|
149 |
"id": "dbc2af95", |
|
|
150 |
"metadata": {}, |
|
|
151 |
"source": [ |
|
|
152 |
"qa_event.hadm_id.nunique()" |
|
|
153 |
], |
|
|
154 |
"outputs": [], |
|
|
155 |
"execution_count": null |
|
|
156 |
}, |
|
|
157 |
{ |
|
|
158 |
"cell_type": "code", |
|
|
159 |
"id": "b4bd715e", |
|
|
160 |
"metadata": {}, |
|
|
161 |
"source": [ |
|
|
162 |
"qa_event.event_type.value_counts()" |
|
|
163 |
], |
|
|
164 |
"outputs": [], |
|
|
165 |
"execution_count": null |
|
|
166 |
}, |
|
|
167 |
{ |
|
|
168 |
"cell_type": "markdown", |
|
|
169 |
"id": "5a9d60c6", |
|
|
170 |
"metadata": {}, |
|
|
171 |
"source": [ |
|
|
172 |
"helper" |
|
|
173 |
] |
|
|
174 |
}, |
|
|
175 |
{ |
|
|
176 |
"cell_type": "code", |
|
|
177 |
"id": "5171bbae", |
|
|
178 |
"metadata": {}, |
|
|
179 |
"source": [ |
|
|
180 |
"from concurrent.futures import ThreadPoolExecutor\n", |
|
|
181 |
"from tqdm import tqdm\n", |
|
|
182 |
"from pandarallel import pandarallel" |
|
|
183 |
], |
|
|
184 |
"outputs": [], |
|
|
185 |
"execution_count": null |
|
|
186 |
}, |
|
|
187 |
{ |
|
|
188 |
"cell_type": "code", |
|
|
189 |
"id": "5d6b9ce2", |
|
|
190 |
"metadata": {}, |
|
|
191 |
"source": [ |
|
|
192 |
"pandarallel.initialize(progress_bar=True)" |
|
|
193 |
], |
|
|
194 |
"outputs": [], |
|
|
195 |
"execution_count": null |
|
|
196 |
}, |
|
|
197 |
{ |
|
|
198 |
"cell_type": "markdown", |
|
|
199 |
"id": "941b116b", |
|
|
200 |
"metadata": {}, |
|
|
201 |
"source": [ |
|
|
202 |
"stat" |
|
|
203 |
] |
|
|
204 |
}, |
|
|
205 |
{ |
|
|
206 |
"cell_type": "code", |
|
|
207 |
"id": "503a9cbd", |
|
|
208 |
"metadata": {}, |
|
|
209 |
"source": [ |
|
|
210 |
"cohort = cohort[cohort.hadm_id.isin(qa_note.hadm_id.unique())]\n", |
|
|
211 |
"len(cohort)" |
|
|
212 |
], |
|
|
213 |
"outputs": [], |
|
|
214 |
"execution_count": null |
|
|
215 |
}, |
|
|
216 |
{ |
|
|
217 |
"cell_type": "code", |
|
|
218 |
"id": "b4e602ba", |
|
|
219 |
"metadata": {}, |
|
|
220 |
"source": [ |
|
|
221 |
"cohort = cohort[cohort.hadm_id.isin(qa_event.hadm_id.unique())]\n", |
|
|
222 |
"len(cohort)" |
|
|
223 |
], |
|
|
224 |
"outputs": [], |
|
|
225 |
"execution_count": null |
|
|
226 |
}, |
|
|
227 |
{ |
|
|
228 |
"cell_type": "code", |
|
|
229 |
"id": "5014c99f", |
|
|
230 |
"metadata": { |
|
|
231 |
"scrolled": false |
|
|
232 |
}, |
|
|
233 |
"source": [ |
|
|
234 |
"cohort.hadm_los.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
235 |
], |
|
|
236 |
"outputs": [], |
|
|
237 |
"execution_count": null |
|
|
238 |
}, |
|
|
239 |
{ |
|
|
240 |
"cell_type": "code", |
|
|
241 |
"id": "11f5935f", |
|
|
242 |
"metadata": {}, |
|
|
243 |
"source": [ |
|
|
244 |
"548.490833 / 24" |
|
|
245 |
], |
|
|
246 |
"outputs": [], |
|
|
247 |
"execution_count": null |
|
|
248 |
}, |
|
|
249 |
{ |
|
|
250 |
"cell_type": "code", |
|
|
251 |
"id": "87a1b947", |
|
|
252 |
"metadata": {}, |
|
|
253 |
"source": [ |
|
|
254 |
"cohort.stay_los.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
255 |
], |
|
|
256 |
"outputs": [], |
|
|
257 |
"execution_count": null |
|
|
258 |
}, |
|
|
259 |
{ |
|
|
260 |
"cell_type": "code", |
|
|
261 |
"id": "f774a307", |
|
|
262 |
"metadata": {}, |
|
|
263 |
"source": [ |
|
|
264 |
"265.649889 / 24" |
|
|
265 |
], |
|
|
266 |
"outputs": [], |
|
|
267 |
"execution_count": null |
|
|
268 |
}, |
|
|
269 |
{ |
|
|
270 |
"cell_type": "code", |
|
|
271 |
"id": "99d6a2f0", |
|
|
272 |
"metadata": {}, |
|
|
273 |
"source": [ |
|
|
274 |
"cohort.len_selected.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
275 |
], |
|
|
276 |
"outputs": [], |
|
|
277 |
"execution_count": null |
|
|
278 |
}, |
|
|
279 |
{ |
|
|
280 |
"cell_type": "code", |
|
|
281 |
"id": "622669a8", |
|
|
282 |
"metadata": {}, |
|
|
283 |
"source": [ |
|
|
284 |
"cohort_filtered = cohort[cohort.len_selected <= 1256.650000]\n", |
|
|
285 |
"cohort_filtered" |
|
|
286 |
], |
|
|
287 |
"outputs": [], |
|
|
288 |
"execution_count": null |
|
|
289 |
}, |
|
|
290 |
{ |
|
|
291 |
"cell_type": "code", |
|
|
292 |
"id": "75ddbce8", |
|
|
293 |
"metadata": {}, |
|
|
294 |
"source": [ |
|
|
295 |
"cohort_filtered.hadm_los.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
296 |
], |
|
|
297 |
"outputs": [], |
|
|
298 |
"execution_count": null |
|
|
299 |
}, |
|
|
300 |
{ |
|
|
301 |
"cell_type": "code", |
|
|
302 |
"id": "aaed6fb7", |
|
|
303 |
"metadata": {}, |
|
|
304 |
"source": [ |
|
|
305 |
"cohort_filtered.stay_los.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
306 |
], |
|
|
307 |
"outputs": [], |
|
|
308 |
"execution_count": null |
|
|
309 |
}, |
|
|
310 |
{ |
|
|
311 |
"cell_type": "code", |
|
|
312 |
"id": "e2cca302", |
|
|
313 |
"metadata": {}, |
|
|
314 |
"source": [ |
|
|
315 |
"cohort_filtered.len_selected.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
316 |
], |
|
|
317 |
"outputs": [], |
|
|
318 |
"execution_count": null |
|
|
319 |
}, |
|
|
320 |
{ |
|
|
321 |
"cell_type": "code", |
|
|
322 |
"id": "bc283fd9", |
|
|
323 |
"metadata": {}, |
|
|
324 |
"source": [ |
|
|
325 |
"all_patients = cohort_filtered.subject_id.unique()\n", |
|
|
326 |
"len(all_patients)" |
|
|
327 |
], |
|
|
328 |
"outputs": [], |
|
|
329 |
"execution_count": null |
|
|
330 |
}, |
|
|
331 |
{ |
|
|
332 |
"cell_type": "code", |
|
|
333 |
"id": "18aa0954", |
|
|
334 |
"metadata": {}, |
|
|
335 |
"source": [ |
|
|
336 |
"from sklearn.model_selection import train_test_split\n", |
|
|
337 |
"\n", |
|
|
338 |
"\n", |
|
|
339 |
"train_val_patients, test_patients = train_test_split(all_patients, test_size=0.1, random_state=42)\n", |
|
|
340 |
"train_patients, val_patients = train_test_split(all_patients, test_size=0.111, random_state=42)" |
|
|
341 |
], |
|
|
342 |
"outputs": [], |
|
|
343 |
"execution_count": null |
|
|
344 |
}, |
|
|
345 |
{ |
|
|
346 |
"cell_type": "code", |
|
|
347 |
"id": "d5d0a3ac", |
|
|
348 |
"metadata": {}, |
|
|
349 |
"source": [ |
|
|
350 |
"print(train_patients.shape)\n", |
|
|
351 |
"print(val_patients.shape)\n", |
|
|
352 |
"print(test_patients.shape)" |
|
|
353 |
], |
|
|
354 |
"outputs": [], |
|
|
355 |
"execution_count": null |
|
|
356 |
}, |
|
|
357 |
{ |
|
|
358 |
"cell_type": "code", |
|
|
359 |
"id": "57dc6d8f", |
|
|
360 |
"metadata": {}, |
|
|
361 |
"source": [ |
|
|
362 |
"train = cohort_filtered[cohort_filtered.subject_id.isin(train_patients)].reset_index(drop=True)\n", |
|
|
363 |
"val = cohort_filtered[cohort_filtered.subject_id.isin(val_patients)].reset_index(drop=True)\n", |
|
|
364 |
"test = cohort_filtered[cohort_filtered.subject_id.isin(test_patients)].reset_index(drop=True)" |
|
|
365 |
], |
|
|
366 |
"outputs": [], |
|
|
367 |
"execution_count": null |
|
|
368 |
}, |
|
|
369 |
{ |
|
|
370 |
"cell_type": "code", |
|
|
371 |
"id": "860d6a39", |
|
|
372 |
"metadata": {}, |
|
|
373 |
"source": [ |
|
|
374 |
"print(train.shape)\n", |
|
|
375 |
"print(val.shape)\n", |
|
|
376 |
"print(test.shape)" |
|
|
377 |
], |
|
|
378 |
"outputs": [], |
|
|
379 |
"execution_count": null |
|
|
380 |
}, |
|
|
381 |
{ |
|
|
382 |
"cell_type": "code", |
|
|
383 |
"id": "ce3c7f18", |
|
|
384 |
"metadata": {}, |
|
|
385 |
"source": [ |
|
|
386 |
"train.to_csv(os.path.join(output_path, \"cohort_train.csv\"), index=False)\n", |
|
|
387 |
"val.to_csv(os.path.join(output_path, \"cohort_val.csv\"), index=False)\n", |
|
|
388 |
"test.to_csv(os.path.join(output_path, \"cohort_test.csv\"), index=False)" |
|
|
389 |
], |
|
|
390 |
"outputs": [], |
|
|
391 |
"execution_count": null |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"cell_type": "code", |
|
|
395 |
"id": "7b0ea788", |
|
|
396 |
"metadata": {}, |
|
|
397 |
"source": [ |
|
|
398 |
"_, test_subset_patients = train_test_split(test_patients, test_size=100, random_state=42)\n", |
|
|
399 |
"len(test_subset_patients)" |
|
|
400 |
], |
|
|
401 |
"outputs": [], |
|
|
402 |
"execution_count": null |
|
|
403 |
}, |
|
|
404 |
{ |
|
|
405 |
"cell_type": "code", |
|
|
406 |
"id": "5ba82c66", |
|
|
407 |
"metadata": {}, |
|
|
408 |
"source": [ |
|
|
409 |
"test_subset = test[test.subject_id.isin(test_subset_patients)].groupby(\"subject_id\").apply(lambda x: x.sample(1)).reset_index(drop=True)\n", |
|
|
410 |
"test_subset" |
|
|
411 |
], |
|
|
412 |
"outputs": [], |
|
|
413 |
"execution_count": null |
|
|
414 |
}, |
|
|
415 |
{ |
|
|
416 |
"metadata": {}, |
|
|
417 |
"cell_type": "code", |
|
|
418 |
"source": "test_subset.len_selected.describe()", |
|
|
419 |
"id": "0bd73438", |
|
|
420 |
"outputs": [], |
|
|
421 |
"execution_count": null |
|
|
422 |
}, |
|
|
423 |
{ |
|
|
424 |
"cell_type": "code", |
|
|
425 |
"id": "a58143a2", |
|
|
426 |
"metadata": {}, |
|
|
427 |
"source": [ |
|
|
428 |
"print(test_subset.subject_id.nunique())\n", |
|
|
429 |
"print(test_subset.hadm_id.nunique())" |
|
|
430 |
], |
|
|
431 |
"outputs": [], |
|
|
432 |
"execution_count": null |
|
|
433 |
}, |
|
|
434 |
{ |
|
|
435 |
"cell_type": "code", |
|
|
436 |
"id": "745f82b5", |
|
|
437 |
"metadata": {}, |
|
|
438 |
"source": [ |
|
|
439 |
"test_subset.to_csv(os.path.join(output_path, \"cohort_test_subset.csv\"), index=False)" |
|
|
440 |
], |
|
|
441 |
"outputs": [], |
|
|
442 |
"execution_count": null |
|
|
443 |
}, |
|
|
444 |
{ |
|
|
445 |
"cell_type": "code", |
|
|
446 |
"id": "7ba15669", |
|
|
447 |
"metadata": {}, |
|
|
448 |
"source": [ |
|
|
449 |
"qa_note_test_subset = qa_note[qa_note.hadm_id.isin(test_subset.hadm_id.unique())]\n", |
|
|
450 |
"qa_note_test_subset" |
|
|
451 |
], |
|
|
452 |
"outputs": [], |
|
|
453 |
"execution_count": null |
|
|
454 |
}, |
|
|
455 |
{ |
|
|
456 |
"cell_type": "code", |
|
|
457 |
"id": "040ce4fb", |
|
|
458 |
"metadata": {}, |
|
|
459 |
"source": [ |
|
|
460 |
"qa_event_test_subset = qa_event[qa_event.hadm_id.isin(test_subset.hadm_id.unique())].groupby(\"hadm_id\").apply(lambda x: x.sample(1)).reset_index(drop=True)\n", |
|
|
461 |
"qa_event_test_subset" |
|
|
462 |
], |
|
|
463 |
"outputs": [], |
|
|
464 |
"execution_count": null |
|
|
465 |
}, |
|
|
466 |
{ |
|
|
467 |
"cell_type": "code", |
|
|
468 |
"id": "5455dbca", |
|
|
469 |
"metadata": {}, |
|
|
470 |
"source": [ |
|
|
471 |
"qa_event_test_subset.hadm_id.nunique()" |
|
|
472 |
], |
|
|
473 |
"outputs": [], |
|
|
474 |
"execution_count": null |
|
|
475 |
}, |
|
|
476 |
{ |
|
|
477 |
"cell_type": "code", |
|
|
478 |
"id": "4c78aa45", |
|
|
479 |
"metadata": {}, |
|
|
480 |
"source": [ |
|
|
481 |
"qa_event_test_subset.event_type.value_counts()" |
|
|
482 |
], |
|
|
483 |
"outputs": [], |
|
|
484 |
"execution_count": null |
|
|
485 |
}, |
|
|
486 |
{ |
|
|
487 |
"cell_type": "code", |
|
|
488 |
"id": "9942e684", |
|
|
489 |
"metadata": {}, |
|
|
490 |
"source": [ |
|
|
491 |
"qa_test_subset = pd.concat([qa_event_test_subset, qa_note_test_subset]).reset_index(drop=True)\n", |
|
|
492 |
"qa_test_subset" |
|
|
493 |
], |
|
|
494 |
"outputs": [], |
|
|
495 |
"execution_count": null |
|
|
496 |
}, |
|
|
497 |
{ |
|
|
498 |
"cell_type": "code", |
|
|
499 |
"id": "8366ae94", |
|
|
500 |
"metadata": {}, |
|
|
501 |
"source": [ |
|
|
502 |
"qa_test_subset.to_csv(os.path.join(output_path, \"qa_test_subset.csv\"), index=False)" |
|
|
503 |
], |
|
|
504 |
"outputs": [], |
|
|
505 |
"execution_count": null |
|
|
506 |
}, |
|
|
507 |
{ |
|
|
508 |
"cell_type": "code", |
|
|
509 |
"id": "410a34c3", |
|
|
510 |
"metadata": {}, |
|
|
511 |
"source": [], |
|
|
512 |
"outputs": [], |
|
|
513 |
"execution_count": null |
|
|
514 |
} |
|
|
515 |
], |
|
|
516 |
"metadata": { |
|
|
517 |
"kernelspec": { |
|
|
518 |
"display_name": "pytorch20", |
|
|
519 |
"language": "python", |
|
|
520 |
"name": "pytorch20" |
|
|
521 |
}, |
|
|
522 |
"language_info": { |
|
|
523 |
"codemirror_mode": { |
|
|
524 |
"name": "ipython", |
|
|
525 |
"version": 3 |
|
|
526 |
}, |
|
|
527 |
"file_extension": ".py", |
|
|
528 |
"mimetype": "text/x-python", |
|
|
529 |
"name": "python", |
|
|
530 |
"nbconvert_exporter": "python", |
|
|
531 |
"pygments_lexer": "ipython3", |
|
|
532 |
"version": "3.9.19" |
|
|
533 |
} |
|
|
534 |
}, |
|
|
535 |
"nbformat": 4, |
|
|
536 |
"nbformat_minor": 5 |
|
|
537 |
} |