|
a |
|
b/src/preprocess/03_merge_events.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"id": "debdace9", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"import os\n", |
|
|
9 |
"import sys\n", |
|
|
10 |
"\n", |
|
|
11 |
"src_path = os.path.abspath(\"../..\")\n", |
|
|
12 |
"print(src_path)\n", |
|
|
13 |
"sys.path.append(src_path)" |
|
|
14 |
], |
|
|
15 |
"outputs": [], |
|
|
16 |
"execution_count": null |
|
|
17 |
}, |
|
|
18 |
{ |
|
|
19 |
"cell_type": "code", |
|
|
20 |
"id": "6bad1e09", |
|
|
21 |
"metadata": {}, |
|
|
22 |
"source": [ |
|
|
23 |
"from src.utils import create_directory, raw_data_path, processed_data_path, set_seed" |
|
|
24 |
], |
|
|
25 |
"outputs": [], |
|
|
26 |
"execution_count": null |
|
|
27 |
}, |
|
|
28 |
{ |
|
|
29 |
"cell_type": "code", |
|
|
30 |
"id": "5d9bc78c", |
|
|
31 |
"metadata": {}, |
|
|
32 |
"source": [ |
|
|
33 |
"set_seed(seed=42)" |
|
|
34 |
], |
|
|
35 |
"outputs": [], |
|
|
36 |
"execution_count": null |
|
|
37 |
}, |
|
|
38 |
{ |
|
|
39 |
"cell_type": "code", |
|
|
40 |
"id": "13d22a57", |
|
|
41 |
"metadata": {}, |
|
|
42 |
"source": [ |
|
|
43 |
"import pandas as pd" |
|
|
44 |
], |
|
|
45 |
"outputs": [], |
|
|
46 |
"execution_count": null |
|
|
47 |
}, |
|
|
48 |
{ |
|
|
49 |
"cell_type": "code", |
|
|
50 |
"id": "dd9852d5", |
|
|
51 |
"metadata": {}, |
|
|
52 |
"source": [ |
|
|
53 |
"mimic_iv_path = os.path.join(raw_data_path, \"physionet.org/files/mimiciv/2.2\")\n", |
|
|
54 |
"output_path = os.path.join(processed_data_path, \"mimic4\")" |
|
|
55 |
], |
|
|
56 |
"outputs": [], |
|
|
57 |
"execution_count": null |
|
|
58 |
}, |
|
|
59 |
{ |
|
|
60 |
"cell_type": "code", |
|
|
61 |
"id": "b6a27998", |
|
|
62 |
"metadata": {}, |
|
|
63 |
"source": [ |
|
|
64 |
"cohort = pd.read_csv(os.path.join(output_path, \"cohort.csv\"))\n", |
|
|
65 |
"print(cohort.shape)\n", |
|
|
66 |
"cohort.head()" |
|
|
67 |
], |
|
|
68 |
"outputs": [], |
|
|
69 |
"execution_count": null |
|
|
70 |
}, |
|
|
71 |
{ |
|
|
72 |
"cell_type": "code", |
|
|
73 |
"id": "9dd92e23", |
|
|
74 |
"metadata": {}, |
|
|
75 |
"source": [ |
|
|
76 |
"cohort[\"hadm_intime\"] = pd.to_datetime(cohort[\"hadm_intime\"])\n", |
|
|
77 |
"cohort[\"hadm_outtime\"] = pd.to_datetime(cohort[\"hadm_outtime\"])\n", |
|
|
78 |
"cohort[\"stay_intime\"] = pd.to_datetime(cohort[\"stay_intime\"])\n", |
|
|
79 |
"cohort[\"stay_outtime\"] = pd.to_datetime(cohort[\"stay_outtime\"])" |
|
|
80 |
], |
|
|
81 |
"outputs": [], |
|
|
82 |
"execution_count": null |
|
|
83 |
}, |
|
|
84 |
{ |
|
|
85 |
"cell_type": "code", |
|
|
86 |
"id": "8f55c793", |
|
|
87 |
"metadata": {}, |
|
|
88 |
"source": [ |
|
|
89 |
"hadm_ids = set(cohort.hadm_id.unique().tolist())\n", |
|
|
90 |
"len(hadm_ids)" |
|
|
91 |
], |
|
|
92 |
"outputs": [], |
|
|
93 |
"execution_count": null |
|
|
94 |
}, |
|
|
95 |
{ |
|
|
96 |
"cell_type": "code", |
|
|
97 |
"id": "d03d447c", |
|
|
98 |
"metadata": {}, |
|
|
99 |
"source": [ |
|
|
100 |
"import ast\n", |
|
|
101 |
"import numpy as np\n", |
|
|
102 |
"\n", |
|
|
103 |
"\n", |
|
|
104 |
"def safe_literal_eval(s):\n", |
|
|
105 |
" if pd.isna(s):\n", |
|
|
106 |
" return np.nan\n", |
|
|
107 |
" return ast.literal_eval(s)\n", |
|
|
108 |
"\n", |
|
|
109 |
"\n", |
|
|
110 |
"cohort.label_diagnosis = cohort.label_diagnosis.apply(safe_literal_eval)" |
|
|
111 |
], |
|
|
112 |
"outputs": [], |
|
|
113 |
"execution_count": null |
|
|
114 |
}, |
|
|
115 |
{ |
|
|
116 |
"cell_type": "markdown", |
|
|
117 |
"id": "5a9d60c6", |
|
|
118 |
"metadata": {}, |
|
|
119 |
"source": [ |
|
|
120 |
"helper" |
|
|
121 |
] |
|
|
122 |
}, |
|
|
123 |
{ |
|
|
124 |
"cell_type": "code", |
|
|
125 |
"id": "5171bbae", |
|
|
126 |
"metadata": {}, |
|
|
127 |
"source": [ |
|
|
128 |
"from concurrent.futures import ThreadPoolExecutor\n", |
|
|
129 |
"from tqdm import tqdm\n", |
|
|
130 |
"from pandarallel import pandarallel" |
|
|
131 |
], |
|
|
132 |
"outputs": [], |
|
|
133 |
"execution_count": null |
|
|
134 |
}, |
|
|
135 |
{ |
|
|
136 |
"cell_type": "code", |
|
|
137 |
"id": "5d6b9ce2", |
|
|
138 |
"metadata": {}, |
|
|
139 |
"source": [ |
|
|
140 |
"pandarallel.initialize(progress_bar=True)" |
|
|
141 |
], |
|
|
142 |
"outputs": [], |
|
|
143 |
"execution_count": null |
|
|
144 |
}, |
|
|
145 |
{ |
|
|
146 |
"cell_type": "markdown", |
|
|
147 |
"id": "e77f628d", |
|
|
148 |
"metadata": {}, |
|
|
149 |
"source": [ |
|
|
150 |
"merge" |
|
|
151 |
] |
|
|
152 |
}, |
|
|
153 |
{ |
|
|
154 |
"cell_type": "code", |
|
|
155 |
"id": "f86a3633", |
|
|
156 |
"metadata": {}, |
|
|
157 |
"source": [ |
|
|
158 |
"events_selected = [ \n", |
|
|
159 |
" \"labevents\", \n", |
|
|
160 |
" \"microbiologyevents\",\n", |
|
|
161 |
" \"prescriptions\",\n", |
|
|
162 |
" \"transfers\",\n", |
|
|
163 |
" \"procedureevents\",\n", |
|
|
164 |
"]" |
|
|
165 |
], |
|
|
166 |
"outputs": [], |
|
|
167 |
"execution_count": null |
|
|
168 |
}, |
|
|
169 |
{ |
|
|
170 |
"cell_type": "code", |
|
|
171 |
"id": "7ae555e1", |
|
|
172 |
"metadata": {}, |
|
|
173 |
"source": [ |
|
|
174 |
"def merge_and_save(events, hadm_id, folder_name):\n", |
|
|
175 |
" \n", |
|
|
176 |
" df = []\n", |
|
|
177 |
" for event in events:\n", |
|
|
178 |
" try:\n", |
|
|
179 |
" tmp = pd.read_csv(os.path.join(output_path, f\"event_{event}/event_{hadm_id}.csv\"),\n", |
|
|
180 |
" usecols=[\"hadm_id\", \"event_type\", \"timestamp\", \"event_value\", \"timestamp_avail\"])\n", |
|
|
181 |
" df.append(tmp)\n", |
|
|
182 |
" except FileNotFoundError:\n", |
|
|
183 |
" continue\n", |
|
|
184 |
" \n", |
|
|
185 |
" assert len(df) > 0, hadm_id\n", |
|
|
186 |
" df = pd.concat(df)\n", |
|
|
187 |
" df.hadm_id = df.hadm_id.astype(int)\n", |
|
|
188 |
" df = df.sort_values(by=\"timestamp\", ascending=True)\n", |
|
|
189 |
" \n", |
|
|
190 |
" tmp1 = pd.read_csv(os.path.join(output_path, f\"event_patient_demographics/event_{hadm_id}.csv\"))\n", |
|
|
191 |
" tmp2 = pd.read_csv(os.path.join(output_path, f\"event_admission_info/event_{hadm_id}.csv\"))\n", |
|
|
192 |
" df = pd.concat([tmp1, tmp2, df])\n", |
|
|
193 |
" \n", |
|
|
194 |
" df = df[[\"hadm_id\", \"event_type\", \"timestamp\", \"event_value\", \"timestamp_avail\"]]\n", |
|
|
195 |
"\n", |
|
|
196 |
" file_path = os.path.join(output_path, f\"{folder_name}/event_{hadm_id}.csv\")\n", |
|
|
197 |
" df.to_csv(file_path, index=False)\n", |
|
|
198 |
"\n", |
|
|
199 |
" return True" |
|
|
200 |
], |
|
|
201 |
"outputs": [], |
|
|
202 |
"execution_count": null |
|
|
203 |
}, |
|
|
204 |
{ |
|
|
205 |
"cell_type": "code", |
|
|
206 |
"id": "98067450", |
|
|
207 |
"metadata": {}, |
|
|
208 |
"source": [ |
|
|
209 |
"!rm -r {output_path}/event_selected" |
|
|
210 |
], |
|
|
211 |
"outputs": [], |
|
|
212 |
"execution_count": null |
|
|
213 |
}, |
|
|
214 |
{ |
|
|
215 |
"cell_type": "code", |
|
|
216 |
"id": "81096fa5", |
|
|
217 |
"metadata": {}, |
|
|
218 |
"source": [ |
|
|
219 |
"create_directory(f\"{output_path}/event_selected\")" |
|
|
220 |
], |
|
|
221 |
"outputs": [], |
|
|
222 |
"execution_count": null |
|
|
223 |
}, |
|
|
224 |
{ |
|
|
225 |
"cell_type": "code", |
|
|
226 |
"id": "2858ec13", |
|
|
227 |
"metadata": {}, |
|
|
228 |
"source": [ |
|
|
229 |
"with ThreadPoolExecutor(max_workers=4) as executor:\n", |
|
|
230 |
" for hadm_id in tqdm(hadm_ids, total=len(hadm_ids)):\n", |
|
|
231 |
" future = executor.submit(\n", |
|
|
232 |
" merge_and_save, \n", |
|
|
233 |
" events_selected, \n", |
|
|
234 |
" hadm_id, \n", |
|
|
235 |
" \"event_selected\"\n", |
|
|
236 |
" )" |
|
|
237 |
], |
|
|
238 |
"outputs": [], |
|
|
239 |
"execution_count": null |
|
|
240 |
}, |
|
|
241 |
{ |
|
|
242 |
"cell_type": "markdown", |
|
|
243 |
"id": "993412bf", |
|
|
244 |
"metadata": {}, |
|
|
245 |
"source": [ |
|
|
246 |
"stat" |
|
|
247 |
] |
|
|
248 |
}, |
|
|
249 |
{ |
|
|
250 |
"cell_type": "code", |
|
|
251 |
"id": "78ff0517", |
|
|
252 |
"metadata": {}, |
|
|
253 |
"source": [ |
|
|
254 |
"from tqdm import tqdm" |
|
|
255 |
], |
|
|
256 |
"outputs": [], |
|
|
257 |
"execution_count": null |
|
|
258 |
}, |
|
|
259 |
{ |
|
|
260 |
"cell_type": "code", |
|
|
261 |
"id": "87ca202e", |
|
|
262 |
"metadata": {}, |
|
|
263 |
"source": [ |
|
|
264 |
"hadm_id_to_len = {}\n", |
|
|
265 |
"for hadm_id in tqdm(hadm_ids):\n", |
|
|
266 |
" try:\n", |
|
|
267 |
" df = pd.read_csv(os.path.join(output_path, f\"event_selected/event_{hadm_id}.csv\")) \n", |
|
|
268 |
" hadm_id_to_len[hadm_id] = len(df)\n", |
|
|
269 |
" del df\n", |
|
|
270 |
" except FileNotFoundError:\n", |
|
|
271 |
" print(f\"{hadm_id} not found!\")\n", |
|
|
272 |
" hadm_id_to_len[hadm_id] = 0" |
|
|
273 |
], |
|
|
274 |
"outputs": [], |
|
|
275 |
"execution_count": null |
|
|
276 |
}, |
|
|
277 |
{ |
|
|
278 |
"cell_type": "code", |
|
|
279 |
"id": "9e282998", |
|
|
280 |
"metadata": {}, |
|
|
281 |
"source": [ |
|
|
282 |
"cohort[\"len_selected\"] = cohort.hadm_id.map(hadm_id_to_len)\n", |
|
|
283 |
"cohort.head()" |
|
|
284 |
], |
|
|
285 |
"outputs": [], |
|
|
286 |
"execution_count": null |
|
|
287 |
}, |
|
|
288 |
{ |
|
|
289 |
"cell_type": "code", |
|
|
290 |
"id": "4891f34e", |
|
|
291 |
"metadata": {}, |
|
|
292 |
"source": [ |
|
|
293 |
"len(cohort)" |
|
|
294 |
], |
|
|
295 |
"outputs": [], |
|
|
296 |
"execution_count": null |
|
|
297 |
}, |
|
|
298 |
{ |
|
|
299 |
"cell_type": "code", |
|
|
300 |
"id": "79d1e1f8", |
|
|
301 |
"metadata": {}, |
|
|
302 |
"source": [ |
|
|
303 |
"cohort.hadm_los.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
304 |
], |
|
|
305 |
"outputs": [], |
|
|
306 |
"execution_count": null |
|
|
307 |
}, |
|
|
308 |
{ |
|
|
309 |
"cell_type": "code", |
|
|
310 |
"id": "4d89e2e7", |
|
|
311 |
"metadata": {}, |
|
|
312 |
"source": [ |
|
|
313 |
"cohort.stay_los.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
314 |
], |
|
|
315 |
"outputs": [], |
|
|
316 |
"execution_count": null |
|
|
317 |
}, |
|
|
318 |
{ |
|
|
319 |
"cell_type": "code", |
|
|
320 |
"id": "defa6a7e", |
|
|
321 |
"metadata": {}, |
|
|
322 |
"source": [ |
|
|
323 |
"cohort.len_selected.describe(percentiles=[.1, .25, .5, .75, .9, .95, .99])" |
|
|
324 |
], |
|
|
325 |
"outputs": [], |
|
|
326 |
"execution_count": null |
|
|
327 |
}, |
|
|
328 |
{ |
|
|
329 |
"cell_type": "code", |
|
|
330 |
"id": "d8d8675e", |
|
|
331 |
"metadata": {}, |
|
|
332 |
"source": "cohort.to_csv(os.path.join(output_path, 'cohort+len.csv'), index=False)", |
|
|
333 |
"outputs": [], |
|
|
334 |
"execution_count": null |
|
|
335 |
}, |
|
|
336 |
{ |
|
|
337 |
"cell_type": "code", |
|
|
338 |
"id": "6a846dff", |
|
|
339 |
"metadata": {}, |
|
|
340 |
"source": [], |
|
|
341 |
"outputs": [], |
|
|
342 |
"execution_count": null |
|
|
343 |
} |
|
|
344 |
], |
|
|
345 |
"metadata": { |
|
|
346 |
"kernelspec": { |
|
|
347 |
"display_name": "pytorch20", |
|
|
348 |
"language": "python", |
|
|
349 |
"name": "pytorch20" |
|
|
350 |
}, |
|
|
351 |
"language_info": { |
|
|
352 |
"codemirror_mode": { |
|
|
353 |
"name": "ipython", |
|
|
354 |
"version": 3 |
|
|
355 |
}, |
|
|
356 |
"file_extension": ".py", |
|
|
357 |
"mimetype": "text/x-python", |
|
|
358 |
"name": "python", |
|
|
359 |
"nbconvert_exporter": "python", |
|
|
360 |
"pygments_lexer": "ipython3", |
|
|
361 |
"version": "3.9.19" |
|
|
362 |
} |
|
|
363 |
}, |
|
|
364 |
"nbformat": 4, |
|
|
365 |
"nbformat_minor": 5 |
|
|
366 |
} |